Nothing
#######################################################################
## Function: gr.oprobit()
## Author : Jonathan Wand (jwand@latte.harvard.edu)
##
## Calculate gradient of ordered probit
##
## Created: 2003-05-05
## Modified: $Date: 2004/07/07 04:08:44 $
## Revision: $Revision: 1.2 $
## RCS-ID: $Id: func.gr.oprobit.self.C.R,v 1.2 2004/07/07 04:08:44 jwand Exp $
##
##
## INPUT:
## Y: matrix (n x n.cat) with counts of choices
## Xb: vector of means
## se: standard deviation of normal
## taus: matrix (n x (n.cat-1)) with cumulative cutpoints
## n.cat:number of categories per question
##
## OUTPUT:
## vector of gradients
#######################################################################
gr.oprobit.self.C <- function(Y,Xb,se,taus,V,V1,X,n.cat,n.self,do.test=0,verbose=FALSE)
{
n <- length(Xb)
nvarX <- NCOL(X)
nvarV <- NCOL(V)
nvarV1<- NCOL(V1)
if (verbose) {
cat("GR.oprobit.self\n")
cat("n.cat",n.cat,
"se",se,
"length taus",length(taus),
"n",n,
"nvarV",nvarV,
"nvarV1",nvarV1,
"nvarX",nvarX,
"\n")
}
dLdBeta <- rep(0.0, nvarX)
dLdGamma <- rep(0.0, nvarV*(n.cat-2)*n.self)
dLdGamma1 <- rep(0.0, nvarV1)
dLdSigma <- 0.0
z <- .C("opllgrself",
as.integer(n),
as.integer(n.cat),
as.integer(nvarX),
as.integer(nvarV),
as.integer(nvarV1),
as.integer(n.self),
as.double(se),
as.integer(Y),
as.double(Xb),
as.double(taus),
as.double(V),
as.double(V1),
as.double(X),
dLdSigma = as.double(dLdSigma),
dLdBeta = as.double(dLdBeta),
dLdGamma = as.double(dLdGamma),
dLdGamma1 = as.double(dLdGamma1),
PACKAGE = "anchors"
);
return( list( beta=z$dLdBeta ,
sigma=z$dLdSigma,
gamma=z$dLdGamma,
gamma1=z$dLdGamma1))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.