Description Usage Arguments Value Note Author(s) See Also
ANFIS on-line or off-line hybrid Jang dynamic learning training process. In addition for off-line learning there is also adaptive learning coefficient and momentum term.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | LSE(object, A, B, initialGamma = 1000)
## S4 method for signature 'ANFIS'
LSE(object, A, B, initialGamma = 1000)
trainHybridJangOffLine(object, epochs = 5, tolerance = 1e-05,
initialGamma = 1000, k = 0.01)
## S4 method for signature 'ANFIS'
trainHybridJangOffLine(object, epochs = 5,
tolerance = 1e-05, initialGamma = 1000, k = 0.01)
trainHybridOffLine(object, epochs = 5, tolerance = 1e-05,
initialGamma = 1000, eta = 0.05, phi = 0.2, a = 0.01, b = 0.1,
delta_alpha_t_1 = list())
## S4 method for signature 'ANFIS'
trainHybridOffLine(object, epochs = 5, tolerance = 1e-05,
initialGamma = 1000, eta = 0.05, phi = 0.2, a = 0.01, b = 0.1,
delta_alpha_t_1 = list())
trainHybridJangOnLine(object, epochs = 5, tolerance = 1e-15,
initialGamma = 1000, k = 0.01, lamda = 0.9, S = matrix(nrow = 0, ncol
= 0))
## S4 method for signature 'ANFIS'
trainHybridJangOnLine(object, epochs = 5,
tolerance = 1e-15, initialGamma = 1000, k = 0.01, lamda = 0.9,
S = matrix(nrow = 0, ncol = 0))
|
object |
ANFIS' class object. |
A |
internal matrix for Iterative Least Squares Estimation of AX=B. |
B |
internal matrix for Iterative Least Squares Estimation of AX=B. |
initialGamma |
numeric large number >> 0. Default 1000. |
epochs |
the max number of training epochs. Default 5. |
tolerance |
convergence error to stop training. Default 1e-5. |
k |
numeric with the initial step size for learning rule. Default 0.01. |
eta |
numeric learning rule coefficient. Default 0.05. |
phi |
numeric momentum rule coefficient. Default 0.2. |
a |
numeric step to increase eta if delta_e is < 0, i.e. descending. Default value 0.01. |
b |
numeric fraction to decrease eta if delta_e is > 0, i.e. ascending. Default value is 0.1. |
delta_alpha_t_1 |
list with numeric matrix with last time step. Default list(). |
lamda |
0 < numeric < 1 forgetting factor. Default 0.9. |
S |
covariance matrix for on-line LSE. Default matrix(nrow=0, ncol=0). |
matrix |
with the system solution for LSE output. |
error |
numeric vector with training associated errors (pattern or epoch) according to trainingType. |
convergence |
TRUE/FALSE if it reached convergence or not. |
updated |
trainingType, premises, consequents, error, residuals, fitted.values and coefficient. |
see full example in ANFIS-class
Cristobal Fresno cfresno@bdmg.com.ar, Andrea S. Llera ALlera@leloir.org.ar and Elmer A. Fernandez efernandez@bdmg.com.ar
Other ANFIS: ANFIS-class
;
anfis3
; coef
,
coef,ANFIS-method
,
coefficients
,
coefficients,ANFIS-method
,
fitted
, fitted,ANFIS-method
,
fitted.values
,
fitted.values,ANFIS-method
,
resid
, resid,ANFIS-method
,
residuals
,
residuals,ANFIS-method
,
summary
,
summary,ANFIS-method
;
getConsequents
,
getConsequents
,
getConsequents,ANFIS-method
,
getConsequents,ANFIS-method
,
getErrors
, getErrors
,
getErrors,ANFIS-method
,
getErrors,ANFIS-method
,
getPremises
, getPremises
,
getPremises,ANFIS-method
,
getPremises-methods
,
getRules
, getRules
,
getRules,ANFIS-method
,
getRules-methods
,
getTrainingType
,
getTrainingType
,
getTrainingType,ANFIS-method
,
getTrainingType,ANFIS-method
;
initialize
,
initialize,ANFIS-method
;
plotMF
, plotMF
,
plotMF,ANFIS-method
,
plotMF-methods
, plotMFs
,
plotMFs
,
plotMFs,ANFIS-method
,
plotMFs-methods
; plot
,
plot,ANFIS-method
; predict
,
predict,ANFIS-method
; print
,
print,ANFIS-method
, show
,
show,ANFIS-method
; trainSet
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.