Description Usage Arguments Value Author(s) See Also Examples
Derivate de membership of x with respect to i of MembershipFunction object heirs.
1 2 3 4 5 6 7 8 9 10 11 12 13 | derivateMF(object, x, i)
## S4 method for signature 'MembershipFunction'
derivateMF(object, x, i)
## S4 method for signature 'BellMF'
derivateMF(object, x, i)
## S4 method for signature 'GaussianMF'
derivateMF(object, x, i)
## S4 method for signature 'NormalizedGaussianMF'
derivateMF(object, x, i)
|
object |
MembershipFunction class heirs |
x |
numeric of the MembershipFunction to be evaluated |
i |
index of the ith parameter to partially derivate |
numeric with the value obtained from the ith derivative at x
Cristobal Fresno cfresno@bdmg.com.ar, Andrea S. Llera ALlera@leloir.org.ar and Elmer A. Fernandez efernandez@bdmg.com.ar
MembershipFunction-class
and evaluateMF
Other Membership Functions: BellMF
,
BellMF-class
; GaussianMF
,
GaussianMF-class
;
MembershipFunction
,
MembershipFunction-class
;
NormalizedGaussianMF
,
NormalizedGaussianMF-class
;
[,MembershipFunction-method
,
[<-,MembershipFunction-method
,
extract-methods
,
extract-methods
; evaluateMF
,
evaluateMF
, evaluateMF
,
evaluateMF
, evaluateMF
,
evaluateMF,BellMF-method
,
evaluateMF,GaussianMF-method
,
evaluateMF,MembershipFunction-method
,
evaluateMF,NormalizedGaussianMF-method
,
evaluateMF-methods
;
print,MembershipFunction-method
;
show,MembershipFunction-method
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | #BellMF example I
#A bell membership function with default prototype (a=1, b=1,c=0)
#The membership of x in the bell, should be 1
#The derivate of the first parameter at x, should be 0
#The derivate of the first parameter at x, should be also 0
bell <- new(Class="BellMF")
bell
evaluateMF(object=bell, x=0)
derivateMF(object=bell, x=0, i=1)
derivateMF(object=bell, x=0, i="a")
#
#BellMF example II
#A bell membership function with parameters (a=4,b=1,c=-10)
#The membership of x in the bell, should be 0.137931
#The derivate of the first parameter at x, should be 0.05945303
#The derivate on "a" at x=0, should be 0.05945303
bell2 <- new(Class="BellMF",parameters=c(a=4,b=1,c=-10))
bell2
evaluateMF(object=bell2, x=0)
derivateMF(object=bell2, x=0, i=1)
derivateMF(object=bell2, x=0, i="a")
#GaussianMF example I
#A Gaussian membership function with default prototype (mu=0, sigma=1)
#The membership of x in the gaussian, should be 1/sqrt(2*pi) = 0.3989423
#The derivate of the first parameter at x, should be 0
#The derivate on "mu" parameter at x, should be 0
gaussian <- new(Class="GaussianMF")
gaussian
evaluateMF(object=gaussian, x=0)
derivateMF(object=gaussian, x=0, i=1)
derivateMF(object=gaussian, x=0, i="mu")
#
#GaussianMF example II
#A Gaussian membership function with parameters (mu=0, sigma=1)
#The membership of x in the Gaussian, should be 1/sqrt(2*pi) = 0.3989423
#The derivate of the first parameter at x, should be 0
#The derivate on "mu" parameter at x, should be 0
gaussian2 <- new(Class="GaussianMF",parameters=c(mu=0,sigma=1))
gaussian2
evaluateMF(object=gaussian2, x=0)
derivateMF(object=gaussian2, x=0, i=1)
derivateMF(object=gaussian2, x=0, i="mu")
#NormalizedGaussianMF example I
#A normalized Gaussian membership function with default parameters (mu=0, sigma=1)
#The derivate of the first parameter at x, should be 1
#The derivate of the first parameter at x, should be 0
#The derivate on "mu" parameter at x, should be 0
normalizedGaussian <- new(Class="NormalizedGaussianMF")
normalizedGaussian
evaluateMF(object=normalizedGaussian, x=0)
derivateMF(object=normalizedGaussian, x=0, i=1)
derivateMF(object=normalizedGaussian, x=0, i="mu")
#
#NormalizedGaussianMF example II
#A normalized Gaussian membership function with parameters (mu=0, sigma=1)
#The derivate of the first parameter at x, should be 1
#The derivate of the first parameter at x, should be 0
#The derivate on "mu" parameter at x, should be 0
normalizedGaussian2 <- new(Class="NormalizedGaussianMF",
parameters=c(mu=0,sigma=1))
normalizedGaussian2
evaluateMF(object=normalizedGaussian2, x=0)
derivateMF(object=normalizedGaussian2, x=0, i=1)
derivateMF(object=normalizedGaussian2, x=0, i="mu")
|
Loading required package: parallel
MembershipFunction: Bell Membership Function
Number of parameters: 3
a b c
1 1 0
Expression: expression(1/(1 + (((x - c)/a)^2)^(b^2)))
c
1
b
0
b
0
MembershipFunction: Bell Membership Function
Number of parameters: 3
a b c
4 1 -10
Expression: expression(1/(1 + (((x - c)/a)^2)^(b^2)))
c
0.137931
b
0.05945303
b
0.05945303
MembershipFunction: Gaussian Membership Function
Number of parameters: 2
mu sigma
0 1
Expression: expression(1/sqrt(2 * pi * sigma^2) * exp(-1/2 * ((x - mu)/sigma)^2))
sigma
0.3989423
sigma
0
sigma
0
MembershipFunction: Gaussian Membership Function
Number of parameters: 2
mu sigma
0 1
Expression: expression(1/sqrt(2 * pi * sigma^2) * exp(-1/2 * ((x - mu)/sigma)^2))
sigma
0.3989423
sigma
0
sigma
0
MembershipFunction: Normalized Gaussian Membership Function
Number of parameters: 2
mu sigma
0 1
Expression: expression(exp(-1/2 * ((x - mu)/sigma)^2))
mu
1
sigma
0
sigma
0
MembershipFunction: Normalized Gaussian Membership Function
Number of parameters: 2
mu sigma
0 1
Expression: expression(exp(-1/2 * ((x - mu)/sigma)^2))
mu
1
sigma
0
sigma
0
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.