Description Usage Arguments Value References Examples
Creates a fixed-effects ANOVA table in APA style
1 2 3 4 5 6 7 | apa.aov.table(
lm_output,
filename,
table.number = NA,
conf.level = 0.9,
type = 3
)
|
lm_output |
Regression (i.e., lm) result objects. Typically, one for each block in the regression. |
filename |
(optional) Output filename document filename (must end in .rtf or .doc only) |
table.number |
Integer to use in table number output line |
conf.level |
Level of confidence for interval around partial eta-squared (.90 or .95). A value of .90 is the default, this helps to create consistency between the CI overlapping with zero and conclusions based on the p-value. |
type |
Sum of Squares Type. Type II or Type III; specify, 2 or 3, respectively. Default value is 3. |
APA table object
Smithson, M. (2001). Correct confidence intervals for various regression effect sizes and parameters: The importance of noncentral distributions in computing intervals. Educational and Psychological Measurement, 61(4), 605-632.
Fidler, F., & Thompson, B. (2001). Computing correct confidence intervals for ANOVA fixed-and random-effects effect sizes. Educational and Psychological Measurement, 61(4), 575-604.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | ## Not run:
#Example 1: 1-way from Field et al. (2012) Discovery Statistics Using R
options(contrasts = c("contr.helmert", "contr.poly"))
lm_output <- lm(libido ~ dose, data = viagra)
apa.aov.table(lm_output, filename = "ex1_anova_table.doc")
# Example 2: 2-way from Fidler & Thompson (2001)
# You must set these contrasts to ensure values match SPSS
options(contrasts = c("contr.helmert", "contr.poly"))
lm_output <- lm(dv ~ a*b, data = fidler_thompson)
apa.aov.table(lm_output,filename = "ex2_anova_table.doc")
#Example 3: 2-way from Field et al. (2012) Discovery Statistics Using R
# You must set these contrasts to ensure values match SPSS
options(contrasts = c("contr.helmert", "contr.poly"))
lm_output <- lm(attractiveness ~ gender*alcohol, data = goggles)
apa.aov.table(lm_output, filename = "ex3_anova_table.doc")
## End(Not run)
|
ANOVA results using libido as the dependent variable
Predictor SS df MS F p partial_eta2 CI_90_partial_eta2
(Intercept) 180.27 1 180.27 91.66 .000
dose 20.13 2 10.06 5.12 .025 .46 [.04, .62]
Error 23.60 12 1.97
Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared
ANOVA results using dv as the dependent variable
Predictor SS df MS F p partial_eta2 CI_90_partial_eta2
(Intercept) 150.00 1 150.00 150.00 .000
a 1.50 1 1.50 1.50 .238 .09 [.00, .32]
b 12.00 3 4.00 4.00 .027 .43 [.04, .57]
a x b 4.50 3 1.50 1.50 .253 .22 [.00, .38]
Error 16.00 16 1.00
Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared
ANOVA results using attractiveness as the dependent variable
Predictor SS df MS F p partial_eta2
(Intercept) 163333.33 1 163333.33 1967.03 .000
gender 168.75 1 168.75 2.03 .161 .05
alcohol 3332.29 2 1666.14 20.07 .000 .49
gender x alcohol 1978.12 2 989.06 11.91 .000 .36
Error 3487.50 42 83.04
CI_90_partial_eta2
[.00, .18]
[.28, .60]
[.15, .49]
Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.