apa.aov.table: Creates a fixed-effects ANOVA table in APA style

Description Usage Arguments Value References Examples

View source: R/apaAOVTable.R

Description

Creates a fixed-effects ANOVA table in APA style

Usage

1
2
3
4
5
6
7
apa.aov.table(
  lm_output,
  filename,
  table.number = NA,
  conf.level = 0.9,
  type = 3
)

Arguments

lm_output

Regression (i.e., lm) result objects. Typically, one for each block in the regression.

filename

(optional) Output filename document filename (must end in .rtf or .doc only)

table.number

Integer to use in table number output line

conf.level

Level of confidence for interval around partial eta-squared (.90 or .95). A value of .90 is the default, this helps to create consistency between the CI overlapping with zero and conclusions based on the p-value.

type

Sum of Squares Type. Type II or Type III; specify, 2 or 3, respectively. Default value is 3.

Value

APA table object

References

Smithson, M. (2001). Correct confidence intervals for various regression effect sizes and parameters: The importance of noncentral distributions in computing intervals. Educational and Psychological Measurement, 61(4), 605-632.

Fidler, F., & Thompson, B. (2001). Computing correct confidence intervals for ANOVA fixed-and random-effects effect sizes. Educational and Psychological Measurement, 61(4), 575-604.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
## Not run: 
#Example 1: 1-way from Field et al. (2012) Discovery Statistics Using R
options(contrasts = c("contr.helmert", "contr.poly"))
lm_output <- lm(libido ~ dose, data = viagra)
apa.aov.table(lm_output, filename = "ex1_anova_table.doc")

# Example 2: 2-way from Fidler & Thompson (2001)
# You must set these contrasts to ensure values match SPSS
options(contrasts = c("contr.helmert", "contr.poly"))
lm_output <- lm(dv ~ a*b, data = fidler_thompson)
apa.aov.table(lm_output,filename = "ex2_anova_table.doc")

#Example 3: 2-way from Field et al. (2012) Discovery Statistics Using R
# You must set these contrasts to ensure values match SPSS
options(contrasts = c("contr.helmert", "contr.poly"))
lm_output <- lm(attractiveness ~ gender*alcohol, data = goggles)
apa.aov.table(lm_output, filename = "ex3_anova_table.doc")

## End(Not run)

Example output

ANOVA results using libido as the dependent variable
 

   Predictor     SS df     MS     F    p partial_eta2 CI_90_partial_eta2
 (Intercept) 180.27  1 180.27 91.66 .000                                
        dose  20.13  2  10.06  5.12 .025          .46         [.04, .62]
       Error  23.60 12   1.97                                           

Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared 



ANOVA results using dv as the dependent variable
 

   Predictor     SS df     MS      F    p partial_eta2 CI_90_partial_eta2
 (Intercept) 150.00  1 150.00 150.00 .000                                
           a   1.50  1   1.50   1.50 .238          .09         [.00, .32]
           b  12.00  3   4.00   4.00 .027          .43         [.04, .57]
       a x b   4.50  3   1.50   1.50 .253          .22         [.00, .38]
       Error  16.00 16   1.00                                            

Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared 



ANOVA results using attractiveness as the dependent variable
 

        Predictor        SS df        MS       F    p partial_eta2
      (Intercept) 163333.33  1 163333.33 1967.03 .000             
           gender    168.75  1    168.75    2.03 .161          .05
          alcohol   3332.29  2   1666.14   20.07 .000          .49
 gender x alcohol   1978.12  2    989.06   11.91 .000          .36
            Error   3487.50 42     83.04                          
 CI_90_partial_eta2
                   
         [.00, .18]
         [.28, .60]
         [.15, .49]
                   

Note: Values in square brackets indicate the bounds of the 90% confidence interval for partial eta-squared 

apaTables documentation built on Jan. 13, 2021, 11:22 p.m.