apa.ezANOVA.table: Creates an ANOVA table in APA style based output of ezANOVA...

Description Usage Arguments Value Examples

View source: R/apaEZANOVA.R

Description

Creates an ANOVA table in APA style based output of ezANOVA command from ez package

Usage

1
2
3
4
5
6
7
apa.ezANOVA.table(
  ez.output,
  correction = "GG",
  table.title = "",
  filename,
  table.number = NA
)

Arguments

ez.output

Output object from ezANOVA command from ez package

correction

Type of sphercity correction: "none", "GG", or "HF" corresponding to none, Greenhouse-Geisser and Huynh-Feldt, respectively.

table.title

String containing text for table title

filename

(optional) Output filename document filename (must end in .rtf or .doc only)

table.number

Integer to use in table number output line

Value

APA table object

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
## Not run: 
# ** Example 1: Between Participant Predictors
#

library(apaTables)
library(ez)

# See format where one row represents one PERSON
# Note that participant, gender, and alcohol are factors

print(goggles)


# Use ezANOVA
# Be sure use the options command, as below, to ensure sufficient digits

options(digits = 10)
goggles_results <- ezANOVA(data = goggles,
                          dv = attractiveness,
                          between = .(gender, alcohol),
                          participant ,
                          detailed = TRUE)


# Make APA table

goggles_table <- apa.ezANOVA.table(goggles_results,
                                  filename="ex1_ez_independent.doc")

print(goggles_table)



#
# ** Example 2: Within Participant Predictors
#

library(apaTables)
library(tidyr)
library(forcats)
library(ez)

# See initial wide format where one row represents one PERSON
print(drink_attitude_wide)

# Convert data from wide format to long format where one row represents one OBSERVATION.
# Wide format column names MUST represent levels of each variable separated by an underscore.
# See vignette for further details.

drink_attitude_long <- gather(data = drink_attitude_wide,
                              key = cell, value = attitude,
                              beer_positive:water_neutral,
                              factor_key=TRUE)

drink_attitude_long <- separate(data = drink_attitude_long,
                                col = cell, into = c("drink","imagery"),
                                sep = "_", remove = TRUE)

drink_attitude_long$drink <- as_factor(drink_attitude_long$drink)
drink_attitude_long$imagery <- as_factor(drink_attitude_long$imagery)

# See new long format of data, where one row is one OBSERVATION.
# As well, notice that we have two columns (drink, imagery)
# drink, imagery, and participant are factors
print(drink_attitude_long)


# Set contrasts to match Field et al. (2012) textbook output

alcohol_vs_water <- c(1, 1, -2)
beer_vs_wine <- c(-1, 1, 0)
negative_vs_other <- c(1, -2, 1)
positive_vs_neutral <- c(-1, 0, 1)
contrasts(drink_attitude_long$drink) <- cbind(alcohol_vs_water, beer_vs_wine)
contrasts(drink_attitude_long$imagery) <- cbind(negative_vs_other, positive_vs_neutral)


# Use ezANOVA
# Be sure use the options command, as below, to ensure sufficient digits

options(digits = 10)
drink_attitude_results <- ezANOVA(data = drink_attitude_long,
                   dv = .(attitude), wid = .(participant),
                   within = .(drink, imagery),
                   type = 3, detailed = TRUE)


# Make APA table

drink_table <- apa.ezANOVA.table(drink_attitude_results,
                                 filename="ex2_repeated_table.doc")

print(drink_table)


#
# ** Example 3: Between and Within Participant Predictors
#

library(apaTables)
library(tidyr)
library(forcats)
library(ez)

# See initial wide format where one row represents one PERSON
print(dating_wide)


# Convert data from wide format to long format where one row represents one OBSERVATION.
# Wide format column names MUST represent levels of each variable separated by an underscore.
# See vignette for further details.

dating_long <- gather(data = dating_wide,
                     key = cell, value = date_rating,
                     attractive_high:ugly_none,
                     factor_key = TRUE)

dating_long <- separate(data = dating_long,
                       col = cell, into = c("looks","personality"),
                       sep = "_", remove = TRUE)

dating_long$looks <- as_factor(dating_long$looks)
dating_long$personality <- as_factor(dating_long$personality)


# See new long format of data, where one row is one OBSERVATION.
# As well, notice that we have two columns (looks, personality)
# looks, personality, and participant are factors

print(dating_long)

# Set contrasts to match Field et al. (2012) textbook output

some_vs_none <- c(1, 1, -2)
hi_vs_av <- c(1, -1, 0)
attractive_vs_ugly <- c(1, 1, -2)
attractive_vs_average <- c(1, -1, 0)
contrasts(dating_long$personality) <- cbind(some_vs_none, hi_vs_av)
contrasts(dating_long$looks) <- cbind(attractive_vs_ugly, attractive_vs_average)


# Use ezANOVA

library(ez)
options(digits = 10)
dating_results <-ezANOVA(data = dating_long, dv = .(date_rating), wid = .(participant),
                        between = .(gender), within = .(looks, personality),
                        type = 3, detailed = TRUE)


# Make APA table

dating_table <- apa.ezANOVA.table(dating_results,
                                 filename = "ex3_mixed_table.doc")
print(dating_table)

## End(Not run)

Example output

Registered S3 methods overwritten by 'lme4':
  method                          from
  cooks.distance.influence.merMod car 
  influence.merMod                car 
  dfbeta.influence.merMod         car 
  dfbetas.influence.merMod        car 
   participant gender alcohol attractiveness
1            1 Female    None             65
2            2 Female    None             70
3            3 Female    None             60
4            4 Female    None             60
5            5 Female    None             60
6            6 Female    None             55
7            7 Female    None             60
8            8 Female    None             55
9            9 Female 2 Pints             70
10          10 Female 2 Pints             65
11          11 Female 2 Pints             60
12          12 Female 2 Pints             70
13          13 Female 2 Pints             65
14          14 Female 2 Pints             60
15          15 Female 2 Pints             60
16          16 Female 2 Pints             50
17          17 Female 4 Pints             55
18          18 Female 4 Pints             65
19          19 Female 4 Pints             70
20          20 Female 4 Pints             55
21          21 Female 4 Pints             55
22          22 Female 4 Pints             60
23          23 Female 4 Pints             50
24          24 Female 4 Pints             50
25          25   Male    None             50
26          26   Male    None             55
27          27   Male    None             80
28          28   Male    None             65
29          29   Male    None             70
30          30   Male    None             75
31          31   Male    None             75
32          32   Male    None             65
33          33   Male 2 Pints             45
34          34   Male 2 Pints             60
35          35   Male 2 Pints             85
36          36   Male 2 Pints             65
37          37   Male 2 Pints             70
38          38   Male 2 Pints             70
39          39   Male 2 Pints             80
40          40   Male 2 Pints             60
41          41   Male 4 Pints             30
42          42   Male 4 Pints             30
43          43   Male 4 Pints             30
44          44   Male 4 Pints             55
45          45   Male 4 Pints             35
46          46   Male 4 Pints             20
47          47   Male 4 Pints             45
48          48   Male 4 Pints             40
Coefficient covariances computed by hccm()


ANOVA results
 

        Predictor df_num df_den  SS_num  SS_den     F    p ges
           gender      1     42  168.75 3487.50  2.03 .161 .05
          alcohol      2     42 3332.29 3487.50 20.07 .000 .49
 gender x alcohol      2     42 1978.12 3487.50 11.91 .000 .36

Note. df_num indicates degrees of freedom numerator. df_den indicates degrees of freedom denominator. 
SS_num indicates sum of squares numerator. SS_den indicates sum of squares denominator. 
ges indicates generalized eta-squared.
 

# A tibble: 20 x 10
   participant beer_positive beer_negative beer_neutral wine_positive
   <fct>               <int>         <int>        <int>         <int>
 1 P1                      1             6            5            38
 2 P2                     43            30            8            20
 3 P3                     15            15           12            20
 4 P4                     40            30           19            28
 5 P5                      8            12            8            11
 6 P6                     17            17           15            17
 7 P7                     30            21           21            15
 8 P8                     34            23           28            27
 9 P9                     34            20           26            24
10 P10                    26            27           27            23
11 P11                     1           -19          -10            28
12 P12                     7           -18            6            26
13 P13                    22            -8            4            34
14 P14                    30            -6            3            32
15 P15                    40            -6            0            24
16 P16                    15            -9            4            29
17 P17                    20           -17            9            30
18 P18                     9           -12           -5            24
19 P19                    14           -11            7            34
20 P20                    15            -6           13            23
# … with 5 more variables: wine_negative <int>, wine_neutral <int>,
#   water_positive <int>, water_negative <int>, water_neutral <int>
# A tibble: 180 x 4
   participant drink imagery  attitude
   <fct>       <fct> <fct>       <int>
 1 P1          beer  positive        1
 2 P2          beer  positive       43
 3 P3          beer  positive       15
 4 P4          beer  positive       40
 5 P5          beer  positive        8
 6 P6          beer  positive       17
 7 P7          beer  positive       30
 8 P8          beer  positive       34
 9 P9          beer  positive       34
10 P10         beer  positive       26
# … with 170 more rows


ANOVA results
 

       Predictor df_num df_den Epsilon   SS_num  SS_den      F    p ges
     (Intercept)   1.00  19.00         11218.01 1920.11 111.01 .000 .41
           drink   1.15  21.93    0.58  2092.34 7785.88   5.11 .030 .12
         imagery   1.49  28.40    0.75 21628.68 3352.88 122.56 .000 .58
 drink x imagery   3.19  60.68    0.80  2624.42 2906.69  17.15 .000 .14

Note. df_num indicates degrees of freedom numerator. df_den indicates degrees of freedom denominator. 
Epsilon indicates Greenhouse-Geisser multiplier for degrees of freedom, 
p-values and degrees of freedom in the table incorporate this correction.
SS_num indicates sum of squares numerator. SS_den indicates sum of squares denominator. 
ges indicates generalized eta-squared.
 

# A tibble: 20 x 11
   participant gender attractive_high average_high ugly_high attractive_some
   <fct>       <fct>            <int>        <int>     <int>           <int>
 1 P01         Male                86           84        67              88
 2 P02         Male                91           83        53              83
 3 P03         Male                89           88        48              99
 4 P04         Male                89           69        58              86
 5 P05         Male                80           81        57              88
 6 P06         Male                80           84        51              96
 7 P07         Male                89           85        61              87
 8 P08         Male               100           94        56              86
 9 P09         Male                90           74        54              92
10 P10         Male                89           86        63              80
11 P11         Female              89           91        93              88
12 P12         Female              84           90        85              95
13 P13         Female              99          100        89              80
14 P14         Female              86           89        83              86
15 P15         Female              89           87        80              83
16 P16         Female              80           81        79              86
17 P17         Female              82           92        85              81
18 P18         Female              97           69        87              95
19 P19         Female              95           92        90              98
20 P20         Female              95           93        96              79
# … with 5 more variables: average_some <int>, ugly_some <int>,
#   attractive_none <int>, average_none <int>, ugly_none <int>
# A tibble: 180 x 5
   participant gender looks      personality date_rating
   <fct>       <fct>  <fct>      <fct>             <int>
 1 P01         Male   attractive high                 86
 2 P02         Male   attractive high                 91
 3 P03         Male   attractive high                 89
 4 P04         Male   attractive high                 89
 5 P05         Male   attractive high                 80
 6 P06         Male   attractive high                 80
 7 P07         Male   attractive high                 89
 8 P08         Male   attractive high                100
 9 P09         Male   attractive high                 90
10 P10         Male   attractive high                 89
# … with 170 more rows


ANOVA results
 

                    Predictor df_num df_den Epsilon    SS_num  SS_den        F
                  (Intercept)   1.00  18.00         846249.80  760.22 20036.90
                       gender   1.00  18.00              0.20  760.22     0.00
                        looks   1.92  34.62    0.96  20779.63  882.71   423.73
                  personality   1.87  33.62    0.93  23233.60 1274.04   328.25
               gender x looks   1.92  34.62    0.96   3944.10  882.71    80.43
         gender x personality   1.87  33.62    0.93   4420.13 1274.04    62.45
          looks x personality   3.20  57.55    0.80   4055.27 1992.62    36.63
 gender x looks x personality   3.20  57.55    0.80   2669.67 1992.62    24.12
    p ges
 .000 .99
 .946 .00
 .000 .81
 .000 .83
 .000 .45
 .000 .47
 .000 .45
 .000 .35

Note. df_num indicates degrees of freedom numerator. df_den indicates degrees of freedom denominator. 
Epsilon indicates Greenhouse-Geisser multiplier for degrees of freedom, 
p-values and degrees of freedom in the table incorporate this correction.
SS_num indicates sum of squares numerator. SS_den indicates sum of squares denominator. 
ges indicates generalized eta-squared.
 

apaTables documentation built on Jan. 13, 2021, 11:22 p.m.