Description Usage Arguments Value Arguments: Notes Author(s) See Also Examples
View source: R/apc_plot_data.R
Computes age, period and cohort sums of a matrix. This is the same as taking column, row and diagonal sums. The match between the age, period and cohort sums and column, row and diagonal sums depends on the data format
1 2 | apc.data.sums(apc.data.list,data.type="r",
average=FALSE,keep.incomplete=TRUE,apc.index=NULL)
|
apc.data.list |
List. See |
data.type |
Optional. Character. "r","d","m" if sums are computed for responses,dose,(mortality) rates. Rates are computed as responses/doses. "r" is default. |
average |
Optional. Logical. If TRUE/FALSE reports averages/sums. Default is FALSE. |
keep.incomplete |
Optional. Logical. If true perform calculation for incomplete sequences by removing NA. If false incomplete sequences are NA. See example. Default=TRUE. |
apc.index |
Optional. List. See |
sums.age |
Vector. Sums/Averages over data.matrix by age. |
sums.per |
Vector. Sums/Averages over data.matrix by period. |
sums.coh |
Vector. Sums/Averages over data.matrix by cohort. |
If apc.index is supplied then the input can be simplified.
For instance if data.type="r"
then, for the first argument, it suffices to write
apc.data.list = list(response=response)
.
Likewise apc.index
does not need to be a full apc.index list
. It suffices to construct a list with entries
age.max
,
per.max
,
coh.max
,
index.trap
,
index.data
,
per.zero
.
Bent Nielsen <bent.nielsen@nuffield.ox.ac.uk> 15 Aug 2018 (15 Dec 2013)
The example below uses Japanese breast cancer data, see data.Japanese.breast.cancer
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | #####################
# EXAMPLE with artificial data
# generate a 3x4 matrix in "AP" data.format with the numbers 1..12
m.data <- matrix(data=seq(length.out=12),nrow=3,ncol=4)
m.data
data.list <- apc.data.list(m.data,"AP")
apc.data.sums(data.list)
# $sums.age
# [1] 22 26 30
# $sums.per
# [1] 6 15 24 33
# $sums.coh
# [1] 3 8 15 24 18 10
apc.data.sums(data.list,average=TRUE)
# $sums.age
# [1] 5.5 6.5 7.5
# $sums.per
# [1] 2 5 8 11
# $sums.coh
# [1] 3 4 5 8 9 10
apc.data.sums(data.list,keep.incomplete=FALSE)
# $sums.age
# [1] 22 26 30
# $sums.per
# [1] 6 15 24 33
# $sums.coh
# [1] NA NA 15 24 NA NA
#####################
# EXAMPLE with Japanese breast cancer data
data.list <- data.Japanese.breast.cancer() # function gives data list
apc.data.sums(data.list)
# $sums.age
# [1] 573 2089 4053 6220 8083 8726 7796 6318 5117 3986 3005
# $sums.per
# [1] 7519 8332 10064 13183 16868
# $sums.coh
# [1] 497 1103 1842 2858 4474 5550 6958 7471 7531 6931 5111 3080 1666 715 179
# Compare with the response matrix
data.list$response
# 1955-1959 1960-1964 1965-1969 1970-1974 1975-1979
# 25-29 88 78 101 127 179
# 30-34 299 330 363 509 588
# 35-39 596 680 798 923 1056
# 40-44 874 962 1171 1497 1716
# 45-49 1022 1247 1429 1987 2398
# 50-54 1035 1258 1560 2079 2794
# 55-59 970 1087 1446 1828 2465
# 60-64 820 861 1126 1549 1962
# 65-69 678 738 878 1140 1683
# 70-74 640 628 656 900 1162
# 75-79 497 463 536 644 865
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.