Description Usage Arguments Value Author(s) Source References See Also Examples
View source: R/apc_data_sets.R
Function that organises UK aids data in apc.data.list
format.
The data set is taken from table 1 of De Angelis and Gilks (1994). The data are also analysed by Davison and Hinkley (1998, Example 7.4). The data are reporting delays for AIDS counting the number of cases by the date of diagnosis and length of reporting delay, measured by quarter.
The data set is in "trapezoid"-format. The original data set is unbalanced in various ways: first column covers a reporting delay of less than one month (or should it be less than one quarter?); last column covers a reporting delay of at least 14 quarters; last diagonal include incomplete counts. The default data set excludes the incomplete counts in the last diagonal, but includes the unbalanced first and last columns.
1 |
all.age.groups |
logical. If FALSE (default), the last calendar year with incomplete counts is ignored. |
The value is a list in apc.data.list
format.
response |
matrix of cases |
data.format |
logical equal to "trapezoid". |
age1 |
numeric equal to 0. This is the label for the reporting delay. |
per1 |
NULL. Not needed when data.format="trapezoid" |
coh1 |
numeric equal to 1983.5. This is the label for the diagnosis quarter (1983, third quarter). |
unit |
numeric equal to 1/4. This is the width of the age and period groups. |
per.zero |
numeric equal to 0. |
per.max |
numeric equal to 38. |
time.adjust |
numric equal to 0. |
label |
character. Default data has "UK AIDS - clean". |
Bent Nielsen <bent.nielsen@nuffield.ox.ac.uk> 7 Feb 2016
Table 1 of De Angelis and Gilks (1994). Also analysed by Davison and Hinkley (1998, Example 7.4).
De Angelis, D. and Gilks, W.R. (1994) Estimating acquired immune deficiency syndrome incidence accounting for reporting delay. Journal of the Royal Statistical Sociey A 157, 31-40.
Davison, A.C. and Hinkley, D.V. (1998) Bootstrap methods and their application. Cambridge: Cambridge University Press.
General description of apc.data.list
format.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | #########################
## It is convient to construct a data variable
data <- data.Belgian.lung.cancer()
## To see the content of the data
data
#########################
# Forecast AIDS incidences by diagonsis year (cohort).
# uses as poisson response model with an AC structure
# although there is evidence of overdispersion and the
# period effect appears significant.
# The omission of the period effect follows
# Davison and Hinkley and a parsimoneous model may be
# advantageous when forecasting.
#
apc.fit.table(data.aids(),"poisson.response")
fit <- apc.fit.model(data.aids(),"poisson.response","AC")
forecast <- apc.forecast.ac(fit)
data.sums.coh <- apc.data.sums(data.aids())$sums.coh
forecast.total <- forecast$response.forecast.coh
forecast.total[,1] <- forecast.total[,1]+data.sums.coh[25:38]
x <- seq(1983.5,1992.75,by=1/4)
y <- data.sums.coh
xlab<- "diagnosis year (cohort)"
ylab<- "diagnoses"
main<- "Davison and Hinkley, Fig 7.6, parametric version"
plot(x,y,xlim=c(1988,1993),ylim=c(200,600),xlab=xlab,ylab=ylab,main=main)
apc.polygon(forecast.total,x.origin=1989.25,unit=1/4)
|
$response
1955-1959 1960-1964 1965-1969 1970-1974
25-29 3 2 7 3
30-34 11 16 11 10
35-39 11 22 24 25
40-44 36 44 42 53
45-49 77 74 68 99
50-54 106 131 99 142
55-59 157 184 189 180
60-64 193 232 262 249
65-69 219 267 323 325
70-74 223 250 308 412
75-79 198 214 253 338
$dose
1955-1959 1960-1964 1965-1969 1970-1974
25-29 15.789474 15.384615 14.000000 15.789474
30-34 16.666667 16.326531 15.277778 14.084507
35-39 14.102564 16.666667 16.326531 15.243902
40-44 13.483146 13.924051 16.600791 15.680473
45-49 15.909091 13.214286 13.793103 16.363636
50-54 16.060606 15.411765 12.941176 13.408876
55-59 15.154440 15.333333 14.905363 12.552301
60-64 13.075881 14.172266 14.555556 14.147727
65-69 10.667316 11.814159 12.971888 13.357994
70-74 8.498476 9.025271 10.108303 11.153221
75-79 5.915745 6.367153 6.880609 7.736324
$data.format
[1] "AP"
$age1
[1] 25
$per1
[1] 1955
$coh1
[1] 5
$unit
[1] 5
$per.zero
NULL
$per.max
NULL
$time.adjust
[1] 0
$label
NULL
$n.decimal
NULL
-2logL df.residual prob(>chi_sq) LR.vs.APC df.vs.APC prob(>chi_sq)
APC 490.323 377 0 NA NA NA
AP 634.260 413 0 143.937 36 0
AC 716.481 413 0 226.158 36 0
PC 2585.817 390 0 2095.494 13 0
Ad 1042.976 449 0 552.653 72 0
Pd 2783.728 426 0 2293.404 49 0
Cd 2812.744 426 0 2322.420 49 0
A 3817.003 450 0 3326.680 73 0
P 12461.680 427 0 11971.357 50 0
C 8069.458 427 0 7579.135 50 0
t 3191.360 462 0 2701.037 85 0
tA 5966.319 463 0 5475.996 86 0
tP 12641.294 463 0 12150.971 86 0
tC 8393.387 463 0 7903.064 86 0
1 14184.299 464 0 13693.976 87 0
aic
APC 2036.312
AP 2108.249
AC 2190.470
PC 4105.807
Ad 2444.965
Pd 4231.717
Cd 4260.733
A 5216.992
P 13907.669
C 9515.447
t 4567.350
tA 7340.308
tP 14015.283
tC 9767.376
1 15556.288
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.