Nothing
#######################################################################
# arules - Mining Association Rules and Frequent Itemsets
# Copyright (C) 2011-2015 Michael Hahsler, Christian Buchta,
# Bettina Gruen and Kurt Hornik
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#' Adult Data Set
#'
#' The `AdultUCI` data set contains the questionnaire data of the
#' _Adult_ database (originally called the _Census Income_
#' Database) formatted as a data.frame. The `Adult` data set contains the
#' data already prepared and coerced to [transactions] for
#' use with \pkg{arules}.
#'
#' The Adult database was extracted from the census bureau database
#' found at \url{https://www.census.gov/} in 1994 by Ronny Kohavi and Barry
#' Becker (Data Mining and Visualization, Silicon Graphics). It was originally
#' used to predict whether income exceeds USD 50K/yr based on census data. We
#' added the attribute `income` with levels `small` and `large`
#' (>50K).
#'
#' We prepared the data set for association mining as shown in the section
#' Examples. We removed the continuous attribute `fnlwgt` (final weight).
#' We also eliminated `education-num` because it is just a numeric
#' representation of the attribute `education`. The other 4 continuous
#' attributes we mapped to ordinal attributes as follows:
#'
#' * age: cut into levels `Young` (0-25), `Middle-aged` (26-45),
#' `Senior` (46-65) and `Old` (66+)
#' * hours-per-week: cut into levels `Part-time` (0-25),
#' `Full-time` (25-40), `Over-time`
#' (40-60) and `Too-much` (60+)
#' * capital-gain and capital-loss: each cut into levels `None` (0),
#' `Low` (0 < median of the values greater zero < max) and `High`
#' (>=max)
#'
#' @name Adult
#' @aliases adult Adult AdultUCI
#' @docType data
#' @format `Adult` is an object of class [transactions]
#' with `r data(Adult); nrow(Adult)` transactions
#' and `r data(Adult); ncol(Adult)` items. See below for details.
#'
#' The AdultUCI data set contains a data frame with 48842
#' observations on the following 15 variables.
#' \describe{
#' \item{age}{a numeric
#' vector.} \item{workclass}{a factor with levels `Federal-gov`,
#' `Local-gov`, `Never-worked`, `Private`, `Self-emp-inc`,
#' `Self-emp-not-inc`, `State-gov`, and `Without-pay`.}
#' \item{education}{an ordered factor with levels `Preschool` <
#' `1st-4th` < `5th-6th` < `7th-8th` < `9th` < `10th`
#' < `11th` < `12th` < `HS-grad` < `Prof-school` <
#' `Assoc-acdm` < `Assoc-voc` < `Some-college` <
#' `Bachelors` < `Masters` < `Doctorate`.}
#' \item{education-num}{a numeric vector.}
#' \item{marital-status}{a factor with
#' levels `Divorced`, `Married-AF-spouse`, `Married-civ-spouse`,
#' `Married-spouse-absent`, `Never-married`, `Separated`, and
#' `Widowed`.} \item{occupation}{a factor with levels `Adm-clerical`,
#' `Armed-Forces`, `Craft-repair`, `Exec-managerial`,
#' `Farming-fishing`, `Handlers-cleaners`, `Machine-op-inspct`,
#' `Other-service`, `Priv-house-serv`, `Prof-specialty`,
#' `Protective-serv`, `Sales`, `Tech-support`, and
#' `Transport-moving`.}
#' \item{relationship}{a factor with levels
#' `Husband`, `Not-in-family`, `Other-relative`,
#' `Own-child`, `Unmarried`, and `Wife`.}
#' \item{race}{a factor
#' with levels `Amer-Indian-Eskimo`, `Asian-Pac-Islander`,
#' `Black`, `Other`, and `White`.}
#' \item{sex}{a factor with levels `Female` and `Male`.}
#' \item{capital-gain}{a numeric vector.}
#' \item{capital-loss}{a numeric vector.} \item{fnlwgt}{a numeric vector.}
#' \item{hours-per-week}{a numeric vector.}
#' \item{native-country}{a factor with levels `Cambodia`, `Canada`, `China`,
#' `Columbia`, `Cuba`, `Dominican-Republic`, `Ecuador`,
#' `El-Salvador`, `England`, `France`, `Germany`,
#' `Greece`, `Guatemala`, `Haiti`, `Holand-Netherlands`,
#' `Honduras`, `Hong`, `Hungary`, `India`, `Iran`,
#' `Ireland`, `Italy`, `Jamaica`, `Japan`, `Laos`,
#' `Mexico`, `Nicaragua`, `Outlying-US(Guam-USVI-etc)`,
#' `Peru`, `Philippines`, `Poland`, `Portugal`,
#' `Puerto-Rico`, `Scotland`, `South`, `Taiwan`,
#' `Thailand`, `Trinadad&Tobago`, `United-States`,
#' `Vietnam`, and `Yugoslavia`.}
#' \item{income}{an ordered factor with
#' levels `small` < `large`.} }
#' @author Michael Hahsler
#' @references A. Asuncion & D. J. Newman (2007): UCI Repository of Machine
#' Learning Databases. Irvine, CA: University of California, Department of
#' Information and Computer Science.
#'
#' The data set was first cited in Kohavi, R. (1996): Scaling Up the Accuracy
#' of Naive-Bayes Classifiers: a Decision-Tree Hybrid. _Proceedings of
#' the Second International Conference on Knowledge Discovery and Data Mining_.
#' @source \url{https://archive.ics.uci.edu/}
#' @keywords datasets
#' @examples
#'
#' data("AdultUCI")
#' dim(AdultUCI)
#' AdultUCI[1:2, ]
#'
#' ## remove attributes
#' AdultUCI[["fnlwgt"]] <- NULL
#' AdultUCI[["education-num"]] <- NULL
#'
#' ## map metric attributes
#' AdultUCI[["age"]] <- ordered(cut(AdultUCI[["age"]], c(15, 25, 45, 65, 100)),
#' labels = c("Young", "Middle-aged", "Senior", "Old"))
#'
#' AdultUCI[["hours-per-week"]] <- ordered(cut(AdultUCI[["hours-per-week"]],
#' c(0,25,40,60,168)),
#' labels = c("Part-time", "Full-time", "Over-time", "Workaholic"))
#'
#' AdultUCI[["capital-gain"]] <- ordered(cut(AdultUCI[["capital-gain"]],
#' c(-Inf,0,median(AdultUCI[["capital-gain"]][AdultUCI[["capital-gain"]] > 0]),
#' Inf)), labels = c("None", "Low", "High"))
#'
#' AdultUCI[["capital-loss"]] <- ordered(cut(AdultUCI[["capital-loss"]],
#' c(-Inf,0, median(AdultUCI[["capital-loss"]][AdultUCI[["capital-loss"]] > 0]),
#' Inf)), labels = c("None", "Low", "High"))
#'
#' ## create transactions
#' Adult <- transactions(AdultUCI)
#' Adult
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.