Nothing
#######################################################################
# arules - Mining Association Rules and Frequent Itemsets
# Copyright (C) 2011-2015 Michael Hahsler, Christian Buchta,
# Bettina Gruen and Kurt Hornik
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#' The Income Data Set
#'
#' Survey example data from the book _The Elements of Statistical Learning_.
#'
#' The `IncomeESL` data set originates from an example in the book
#' _The Elements of Statistical Learning_ (see Section source). The
#' data set is an extract from this survey. It consists of 8993 instances
#' (obtained from the original data set with 9409 instances, by removing those
#' observations with the annual income missing) with 14 demographic attributes.
#' The data set is a good mixture of categorical and continuous variables with
#' a lot of missing data. This is characteristic of data mining applications.
#' The Income data set contains the data already prepared and coerced to
#' [transactions].
#'
#' To create transactions for Income, the original data frame
#' in `IncomeESL` is prepared in a similar way as described in _The
#' Elements of Statistical Learning._ We removed cases with missing values and
#' cut each ordinal variable (age, education, income, years in bay area, number
#' in household, and number of children) at its median into two values (see
#' Section examples).
#'
#' @name Income
#' @aliases Income income IncomeESL
#' @docType data
#' @format
#'
#' The data is provided in two formats:
#'
#' 1. `Income` is an object of class [transactions]
#' with 6876 transactions (complete cases)
#' and 50 items. See below for details.
#'
#' 2. `IncomeESL` is a data frame with 8993 observations on the
#' following 14 variables:
#'
#'
#' \describe{
#' \item{income}{an ordered factor with
#' levels `[0,10)` < `[10,15)` < `[15,20)` < `[20,25)` <
#' `[25,30)` < `[30,40)` < `[40,50)` < `[50,75)` <
#' `75+`}
#' \item{sex}{a factor with levels `male` `female`}
#' \item{marital status}{a factor with levels `married`
#' `cohabitation` `divorced` `widowed` `single`}
#' \item{age}{an ordered factor with levels `14-17` < `18-24` <
#' `25-34` < `35-44` < `45-54` < `55-64` < `65+`}
#' \item{education}{an ordered factor with levels `grade <9` <
#' `grades 9-11` < `high school graduate` < \code{college (1-3
#' years)} < `college graduate` < `graduate study`}
#' \item{occupation}{a factor with levels `professional/managerial`
#' `sales` `laborer` `clerical/service` `homemaker`
#' `student` `military` `retired` `unemployed`}
#' \item{years
#' in bay area}{an ordered factor with levels `<1` < `1-3` <
#' `4-6` < `7-10` < `>10`}
#' \item{dual incomes}{a factor with
#' levels `not married` `yes` `no`}
#' \item{number in
#' household}{an ordered factor with levels `1` < `2` < `3` <
#' `4` < `5` < `6` < `7` < `8` < `9+`}
#' \item{number of children}{an ordered factor with levels `0` < `1`
#' < `2` < `3` < `4` < `5` < `6` < `7` < `8`
#' < `9+`} \item{householder status}{a factor with levels `own`
#' `rent` `live with parents/family`}
#' \item{type of home}{a factor
#' with levels `house` `condominium` `apartment` \code{mobile
#' Home} `other`}
#' \item{ethnic classification}{a factor with levels
#' `american indian` `asian` `black` `east indian`
#' `hispanic` `pacific islander` `white` `other`}
#' \item{language in home}{a factor with levels `english` `spanish`
#' `other`} }
#' @author Michael Hahsler
#' @source Impact Resources, Inc., Columbus, OH (1987).
#'
#' Obtained from the web site of the book: Hastie, T., Tibshirani, R. &
#' Friedman, J. (2001) _The Elements of Statistical Learning_.
#' Springer-Verlag.
#' @keywords datasets
#' @examples
#' data("IncomeESL")
#' IncomeESL[1:3, ]
#'
#' ## remove incomplete cases
#' IncomeESL <- IncomeESL[complete.cases(IncomeESL), ]
#'
#' ## preparing the data set
#' IncomeESL[["income"]] <- factor((as.numeric(IncomeESL[["income"]]) > 6) +1,
#' levels = 1 : 2 , labels = c("$0-$40,000", "$40,000+"))
#'
#' IncomeESL[["age"]] <- factor((as.numeric(IncomeESL[["age"]]) > 3) +1,
#' levels = 1 : 2 , labels = c("14-34", "35+"))
#'
#' IncomeESL[["education"]] <- factor((as.numeric(IncomeESL[["education"]]) > 4) +1,
#' levels = 1 : 2 , labels = c("no college graduate", "college graduate"))
#'
#' IncomeESL[["years in bay area"]] <- factor(
#' (as.numeric(IncomeESL[["years in bay area"]]) > 4) +1,
#' levels = 1 : 2 , labels = c("1-9", "10+"))
#'
#' IncomeESL[["number in household"]] <- factor(
#' (as.numeric(IncomeESL[["number in household"]]) > 3) +1,
#' levels = 1 : 2 , labels = c("1", "2+"))
#'
#' IncomeESL[["number of children"]] <- factor(
#' (as.numeric(IncomeESL[["number of children"]]) > 1) +0,
#' levels = 0 : 1 , labels = c("0", "1+"))
#'
#' ## creating transactions
#' Income <- transactions(IncomeESL)
#' Income
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.