Nothing
#' Dependency discovery with DFD
#'
#' Finds all the minimal functional dependencies represented in a data frame.
#'
#' Column names for \code{\link{df}} must be unique.
#'
#' The algorithm used for finding dependencies is DFD. This searches for
#' determinant sets for each dependent attribute (dependant) by traversing the
#' powerset of the other (non-excluded) attributes, and is equivalent to
#' depth-first.
#'
#' The implementation for DFD differs a little from the algorithm presented in
#' the original paper:
#' \itemize{
#' \item Some attributes, or attribute types, can be designated, ahead of
#' time, as not being candidate members for determinant sets. This reduces the
#' number of candidate determinant sets to be searched, saving time by not
#' searching for determinant sets that the user would remove later anyway.
#' \item Attributes that have a single unique value, i.e. are
#' constant, get attributed a single empty determinant set. In the standard
#' DFD algorithm, they would be assigned all the other non-excluded attributes
#' as length-one determinant sets. Assigning them the empty set distinguishes
#' them as constant, allowing for special treatment at normalisation and later
#' steps.
#' \item As was done in the original Python library, there is an extra case in
#' seed generation for when there are no discovered maximal non-dependencies.
#' In this case, we take all of the single-attribute nodes, then filter out by
#' minimal dependencies as usual. This is equivalent to taking the empty set
#' as the single maximal non-dependency.
#' \item There are three results when checking whether a candidate node is
#' minimal/maximal. TRUE indicates the node is minimal/maximal, as usual.
#' FALSE has been split into FALSE and NA. NA indicates that we can not yet
#' determine whether the node is minimal/maximal. FALSE indicates that we have
#' determined that it is not minimal/maximal, and we can set its category as
#' such. This is done by checking whether any of its adjacent
#' subsets/supersets are dependencies/non-dependencies, instead of waiting to
#' exhaust the adjacent subsets/supersets to visit when picking the next node
#' to visit.
#' \item We do not yet keep hashmaps to manage subset/superset relationships,
#' as described in Section 3.5 of the original paper.
#' \item \code{skip_bijections} allows for additional optimisation for finding
#' functional dependencies when there are pairwise-equivalent attributes.
#' \item Missing values (NA) are treated as a normal value, with NA = NA being
#' true, and x = NA being false for any non-NA value of x.
#' }
#'
#' ## Floating-point variables
#'
#' Numerical/complex values, i.e. floating-point values, represent difficulties
#' for stating functional dependencies. A fundamental condition for stating
#' functional dependencies is that we can compare two values for the same
#' variable, and they are equivalent or not equivalent.
#'
#' Usually, this is done by checking they're equal -- this is the approach used
#' in \code{discover} -- but we can use any comparison that is an equivalence
#' relation.
#'
#' However, checking floating-point values for equality is not simple. \code{==}
#' is not appropriate, even when comparing non-calculated values we've read from
#' a file, because how a given number is converted into a float can vary by
#' computer architecture, meaning that two values can be considered equal on one
#' computer, and not equal on another. This can happen even if they're both
#' using 64-bit R, and even though all R platforms work with values conforming
#' to the same standard (see \code{\link{double}}). For example,
#' \eqn{8.54917750000000076227} and \eqn{8.54917749999999898591} are converted into
#' different floating-point representations on x86, but the same representation
#' on ARM, resulting in inequality and equality respectively.
#'
#' For this and other reasons, checking numerical/complex values for
#' (near-)equality in R is usually done with \code{\link{all.equal}}. This
#' determines values \eqn{x} and \eqn{y} to be equal if their absolute/relative
#' absolute difference is within some tolerance value. However, we can not use
#' this. Equivalence relations must be transitive: if we have values \eqn{x},
#' \eqn{y}, and \eqn{z}, and \eqn{x} is equivalent to both \eqn{y} and \eqn{z},
#' then \eqn{y} and \eqn{z} must also be equivalent. This tolerance-based
#' equivalence is not transitive: it is reasonably straightforward to set up
#' three values so that the outer values are far enough apart to be considered
#' non-equivalent, but the middle value is close enough to be considered
#' equivalent to both of them. Using this to determine functional dependencies,
#' therefore, could easily result in a large number of inconsistencies.
#'
#' This means we have no good option for comparing numerical/complex values
#' as-is for equivalence, with consistent results across different machines, so
#' we must treat them differently. We have three options:
#'
#' - Round/truncate the values, before comparison, to some low degree of precision;
#' - Coerce the values to another class before passing them into \code{discover};
#' - Read values as characters if reading data from a file.
#'
#' \code{discover} takes the first option, with a default number of significant
#' digits low enough to ensure consistency across different machines. However,
#' the user can also use any of these options when processing the data before
#' passing it to \code{discover}. The third option, in particular, is
#' recommended if reading data from a file.
#'
#' ## Skipping bijections
#'
#' Skipping bijections allows skipping redundant searches. For example, if the
#' search discovers that \code{A -> B} and \code{B -> A}, then only one of those
#' attributes is considered for the remainder of the search. Since the search
#' time increases exponentially with the number of attributes considered, this
#' can significantly speed up search times. At the moment, this is only be done
#' for bijections between single attributes, such as \code{A <-> B}; if \code{A
#' <-> {B, C}}, nothing is skipped. Whether bijections are skipped doesn't
#' affect which functional dependencies are present in the output, but it might
#' affect their order.
#'
#' Skipping bijections for approximate dependencies, i.e. when `accuracy < 1`,
#' should be avoided: it can result in incorrect output, since an approximate
#' bijection doesn't imply equivalent approximate dependencies.
#'
#' ## Limiting the determinant set size
#'
#' Setting \code{detset_limit} smaller than the largest-possible value has
#' different behaviour for different search algorithms, the result is always
#' that \code{discover(x, 1, detset_limit = n)} is equivalent to doing a full
#' search, \code{fds <- discover(x, 1)}, then
#' filtering by determinant set size post-hoc, \code{fds[lengths(detset(fds)) <=
#' n]}.
#'
#' For DFD, the naive way to implement it is by removing determinant sets larger
#' than the limit from the search tree for possible functional dependencies for
#' each dependant. However, this usually results in the search taking much more
#' time than without a limit.
#'
#' For example, suppose we search for determinant sets for a dependant that has
#' none (the dependant is the only key for \code{df}, for example). Using DFD,
#' we begin with a single attribute, then add other attributes one-by-one, since
#' every set gives a non-dependency. When we reach a maximum-size set, we can
#' mark all subsets as also being non-dependencies.
#'
#' With the default limit, there is only one maximum-size set, containing all of
#' the available attributes. If there are \eqn{n} candidate attributes for
#' determinants, the search finishes after visiting \eqn{n} sets.
#'
#' With a smaller limit \eqn{k}, there are \eqn{\binom{n}{k}} maximum-size sets
#' to explore. Since a DFD search adds or removes one attribute at each step,
#' this means the search must take at least \eqn{k - 2 + 2\binom{n}{k}} steps,
#' which is larger than \eqn{n} for all non-trivial cases \eqn{0 < k \leq n}.
#'
#' We therefore use a different approach, where any determinant sets above the
#' size limit are not allowed to be candidate seeds for new search paths, and
#' any discovered dependencies with a size above the limit are discard at the
#' end of the entire DFD search. This means that nodes for determinant sets
#' above the size limit are only visited in order to determine maximality of
#' non-dependencies within the size limit. It turns out to be rare that this
#' results in a significant speed-up, but it never results in the search having
#' to visit more nodes than it would without a size limit, so the average search
#' time is never made worse.
#' @param df a data.frame, the relation to evaluate.
#' @param accuracy a numeric in (0, 1]: the accuracy threshold required in order
#' to conclude a dependency.
#' @param digits a positive integer, indicating how many significant digits are
#' to be used for numeric and complex variables. A value of \code{NA} results
#' in no rounding. By default, this uses \code{getOption("digits")}, similarly
#' to \code{\link{format}}. See the "Floating-point variables" section below
#' for why this rounding is necessary for consistent results across different
#' machines. See the note in \code{\link{print.default}} about \code{digits >=
#' 16}.
#' @param full_cache a logical, indicating whether to store information about
#' how sets of attributes group the relation records (stripped partitions).
#' Otherwise, only the number of groups is stored. Storing the stripped
#' partition is expected to let the algorithm run more quickly, but might be
#' inefficient for small data frames or small amounts of memory.
#' @param store_cache a logical, indicating whether to keep cached information
#' to use when finding dependencies for other dependants. This allows the
#' algorithm to run more quickly by not having to re-calculate information,
#' but takes up more memory.
#' @param skip_bijections a logical, indicating whether to skip some dependency
#' searches that are made redundant by discovered bijections between
#' attributes. This can significantly speed up the search if \code{df}
#' contains equivalent attributes early in column order, but results in
#' undefined behaviour if \code{accuracy < 1}. See Details for more
#' information.
#' @param exclude a character vector, containing names of attributes to not
#' consider as members of determinant sets. If names are given that aren't
#' present in \code{df}, the user is given a warning.
#' @param exclude_class a character vector, indicating classes of attributes to
#' not consider as members of determinant_sets. Attributes are excluded if
#' they inherit from any given class.
#' @param dependants a character vector, containing names of all attributes for
#' which to find minimal functional dependencies for which they are the
#' dependant. By default, this is all of the attribute names. A smaller set of
#' attribute names reduces the amount of searching required, so can reduce the
#' computation time if only some potential dependencies are of interest.
#' @param detset_limit an integer, indicating the largest determinant set size
#' that should be searched for. By default, this is large enough to allow all
#' possible determinant sets. See Details for comments about the effect on the
#' result, and on the computation time.
#' @inheritParams autodb
#'
#' @return A \code{\link{functional_dependency}} object, containing the discovered
#' dependencies. The column names of \code{df} are stored in the \code{attrs}
#' attribute, in order, to serve as a default priority order for the
#' attributes during normalisation.
#' @encoding UTF-8
#' @references
#' Abedjan Z., Schulze P., Naumann F. (2014) DFD: efficient functional
#' dependency discovery. *Proceedings of the 23rd ACM International Conference
#' on Conference on Information and Knowledge Management (CIKM '14). New York,
#' U.S.A.*, 949--958.
#' @examples
#' # simple example
#' discover(ChickWeight, 1)
#'
#' # example with spurious dependencies
#' discover(CO2, 1)
#' # exclude attributes that can't be determinants.
#' # in this case, the numeric attributes are now
#' # not determined by anything, because of repeat measurements
#' # with no variable to mark them as such.
#' discover(CO2, 1, exclude_class = "numeric")
#' # include only dependencies with dependants of interest.
#' discover(CO2, 1, dependants = c("Treatment", "uptake"))
#' @export
discover <- function(
df,
accuracy,
digits = getOption("digits"),
full_cache = TRUE,
store_cache = TRUE,
skip_bijections = FALSE,
exclude = character(),
exclude_class = character(),
dependants = names(df),
detset_limit = ncol(df) - 1L,
progress = FALSE,
progress_file = ""
) {
use_visited <- TRUE
if (skip_bijections && accuracy < 1)
warning("skipping bijections when accuracy < 1 can result in incorrect output")
report <- reporter(progress, progress_file, new = TRUE)
n_cols <- ncol(df)
if (n_cols == 0)
return(functional_dependency(
stats::setNames(list(), character()),
attrs_order = character()
))
column_names <- colnames(df)
duplicates <- which(duplicated(column_names))
if (length(duplicates) > 0) {
dup_names <- unique(column_names[duplicates])
sorted_dup_names <- dup_names[order(match(dup_names, column_names))]
stop("duplicate column names: ", toString(sorted_dup_names))
}
if (any(!is.element(exclude, column_names)))
warning("there are attribute names in exclude not present in df")
if (any(!is.element(dependants, column_names)))
warning("there are attribute names in dependants not present in df")
dependants <- intersect(column_names, dependants)
valid_determinant_name <- !is.element(column_names, exclude)
valid_determinant_class <- !vapply(
df,
inherits,
logical(1),
exclude_class
)
valid_determinant_attrs_prefixing <- column_names[
valid_determinant_name & valid_determinant_class
]
# convert all columns to integers, since they're checked for duplicates more
# quickly when calculating partitions
# we must round floating-point/complex columns, since they're otherwise
# infeasible:
# - all.equal, i.e. equality by tolerance, isn't transient, so isn't an
# equivalence relation; we need such a relation for consistent partitioning
# - ==, identical, etc., i.e. equality by bit comparison, results in different
# results on different machines, e.g. x86 and ARM(?) 64-bit both represent
# floats in 64-bit, but x86 represents in 80 bits first and then rounds,
# so non-representable numbers get approximated differently, resulting in
# different partition results
if (!is.na(digits))
report$exp(
df[] <- lapply(df, format_if_float, digits = digits),
paste("formatting numerical/complex variables with", digits, "significant digits")
)
df <- report$exp(
lapply(df, \(x) match(x, x)) |>
data.frame() |>
stats::setNames(column_names),
"simplifying data types"
)
partitions <- list()
dependencies <- stats::setNames(rep(list(list()), n_cols), column_names)
# check for constant-value columns, because if columns are fixed we can
# ignore them for the rest of the search
fixed <- character()
for (i in seq_along(column_names)) {
attr <- column_names[i]
if (all(is.na(df[[attr]])) || all(df[[attr]] == df[[attr]][1])) {
fixed <- report$op(fixed, c, paste(attr, "is fixed"), attr)
if (attr %in% dependants)
dependencies[[attr]] <- list(character())
}
}
nonfixed <- setdiff(column_names, fixed)
valid_dependant_attrs <- intersect(dependants, nonfixed)
# check for zero dependants before removing simple keys, otherwise
# returning early would leave out the simple-key results
if (
length(valid_dependant_attrs) == 0 ||
detset_limit < 1
) {
report$stat("no valid dependants, or detset_limit < 1, skipping search")
return(flatten(
filter_nonflat_dependencies(dependencies, detset_limit),
column_names
))
}
# For non-fixed non-key attributes, all can be dependants,
# but might not all be valid determinants.
valid_determinant_attrs_prekeys <- intersect(
nonfixed,
valid_determinant_attrs_prefixing
)
# Non-fixed attributes might be single-attribute keys: we can list them as
# determining all other non-fixed attributes, use them in the main search only
# as dependants. If there are several single-attribute keys, and we're
# skipping bijections, then we can also remove all but one of them as
# dependants.
valid_determinant_attrs <- valid_determinant_attrs_prekeys
# Can't just check column values are seq_len(nrow(df)),
# because df can have duplicate rows, and we can't remove
# the duplicate rows in df, because it changes the behaviour
# for accuracy < 1.
df_uniq <- df_unique(df)
simple_keys <- nonfixed[vapply(
df_uniq[nonfixed],
Negate(anyDuplicated),
logical(1)
)]
determinant_keys <- intersect(simple_keys, valid_determinant_attrs_prekeys)
dependant_keys <- intersect(simple_keys, valid_dependant_attrs)
if (length(simple_keys) > 0) {
report$stat(paste("single-attribute keys:", toString(simple_keys)))
valid_determinant_attrs <- setdiff(valid_determinant_attrs, simple_keys)
if (skip_bijections) {
valid_dependant_attrs <- setdiff(valid_dependant_attrs, dependant_keys[-1])
}
}
if (length(valid_determinant_attrs) < n_cols) {
report$stat(
paste(
"attributes not considered as determinants:",
toString(setdiff(column_names, valid_determinant_attrs))
)
)
}
valid_determinant_nonfixed_indices <- match(valid_determinant_attrs, nonfixed)
# Maximum size of determinant set for a dependant is number
# of other valid determinants.
# If there are dependants that aren't valid determinants,
# this is number of valid determinant attributes. If there
# aren't, subtract one.
n_dependant_only <- length(setdiff(valid_dependant_attrs, valid_determinant_attrs))
max_n_lhs_attrs <- length(valid_determinant_attrs) -
as.integer(n_dependant_only == 0)
# using 0 would allow for one more column, but makes indexing a pain
lhs_attrs_limit <- floor(log(.Machine$integer.max, 2))
if (max_n_lhs_attrs > lhs_attrs_limit)
stop(paste(
"only data.frames with up to",
lhs_attrs_limit,
"columns possible in a determinant set currently supported"
))
bijections <- list()
# main search
if (max_n_lhs_attrs > 0) {
powerset <- report$op(
max_n_lhs_attrs,
nonempty_powerset,
"constructing powerset",
use_visited
)
# cache generated powerset and reductions, otherwise we spend a lot
# of time duplicating reduction work
all_powersets <- stats::setNames(list(powerset), max_n_lhs_attrs)
compute_partitions <- partition_computer(
unname(df[, nonfixed, drop = FALSE]),
accuracy,
full_cache
)
for (rhs in seq_along(nonfixed)[nonfixed %in% valid_dependant_attrs]) {
report$stat(paste("dependant", nonfixed[rhs]))
lhs_nonfixed_indices <- setdiff(valid_determinant_nonfixed_indices, rhs)
n_lhs_attrs <- length(lhs_nonfixed_indices)
expected_n_lhs_attrs <- max_n_lhs_attrs -
(n_dependant_only > 0 && is.element(rhs, valid_determinant_nonfixed_indices))
stopifnot(n_lhs_attrs == expected_n_lhs_attrs)
bijection_candidate_nonfixed_indices <- if (skip_bijections)
match(
names(dependencies)[
vapply(
dependencies,
\(x) any(vapply(x, identical, logical(1), nonfixed[[rhs]])),
logical(1)
)
],
nonfixed
) |>
intersect(lhs_nonfixed_indices)
else
integer()
if (n_lhs_attrs > 0) {
if (n_lhs_attrs %in% names(all_powersets))
nodes <- all_powersets[[as.character(n_lhs_attrs)]]
else{
nodes <- reduce_powerset(powerset, n_lhs_attrs)
all_powersets[[as.character(n_lhs_attrs)]] <- nodes
}
lhss <- report$op(
rhs,
find_LHSs_dfd,
"determinants available, starting search",
lhs_nonfixed_indices,
nodes,
n_lhs_attrs,
partitions,
compute_partitions,
bijection_candidate_nonfixed_indices,
detset_limit,
store_cache
)
if (lhss[[2 + store_cache]]) {
stopifnot(
is.element(lhss[[1]], bijection_candidate_nonfixed_indices),
lhss[[1]] < rhs
)
bij_ind <- match(lhss[[1]], names(bijections))
if (is.na(bij_ind))
bijections <- c(
bijections,
stats::setNames(list(c(lhss[[1]], rhs)), lhss[[1]])
)
else{
bijections[[bij_ind]] <- c(
bijections[[bij_ind]],
rhs
)
}
valid_determinant_nonfixed_indices <- setdiff(
valid_determinant_nonfixed_indices,
rhs
)
max_n_lhs_attrs <- max_n_lhs_attrs - 1L
if (max_n_lhs_attrs %in% names(all_powersets))
powerset <- all_powersets[[as.character(max_n_lhs_attrs)]]
else{
powerset <- reduce_powerset(powerset, max_n_lhs_attrs)
all_powersets[[as.character(max_n_lhs_attrs)]] <- powerset
}
}else
dependencies[[nonfixed[rhs]]] <- c(
dependencies[[nonfixed[rhs]]],
lapply(lhss[[1]], \(x) nonfixed[x])
)
if (store_cache)
partitions <- lhss[[2]]
}
}
}
report$stat("DFD complete")
dependencies <- add_simple_key_deps(
dependencies,
determinant_keys,
dependant_keys,
valid_dependant_attrs
)
if (skip_bijections) {
dependencies <- add_deps_implied_by_bijections(
dependencies,
bijections,
nonfixed,
column_names
)
dependencies <- add_deps_implied_by_simple_keys(
dependencies,
determinant_keys,
dependant_keys,
valid_dependant_attrs
)
}
flatten(
filter_nonflat_dependencies(dependencies, detset_limit),
column_names
)
}
format_if_float <- function(x, digits) {
if ((inherits(x, "numeric") || inherits(x, "complex")))
format(x, digits = digits, scientific = FALSE)
else
x
}
find_LHSs_dfd <- function(
rhs,
lhs_nonfixed_indices,
nodes,
n_lhs_attrs,
partitions,
compute_partitions,
bijection_candidate_nonfixed_indices,
detset_limit,
store_cache = FALSE
) {
# The original library "names" nodes with their attribute set,
# so finding a node involves matching a character vector against
# a list of character vectors. This is slow.
# Instead, we assign each possible attribute set an integer,
# by taking the integer that matches the bitset. This limits
# us to floor(.Machine$integer.max) attributes as potential determinants.
# We could use numerics to get to .Machine$double.digits determinant
# attributes, but these would be arbitrary floats rather than integers,
# so more work would be required to match indices etc.
# Assigning the integers per find_LHSs call allows one more column,
# since we don't need to include the dependant.
# Node categories:
# -3 = candidate maximal non-dependency
# -2 = maximal non-dependency
# -1 = non-maximal non-dependency
# 0 = unresolved
# 1 = non-minimal dependency
# 2 = minimal dependency
# 3 = candidate minimal dependency
# initial seeds are the single-attribute nodes, possibly pruned by detset
# constraints
lhs_attr_nodes <- to_nodes(seq_len(n_lhs_attrs), nodes)
initial_seeds <- lhs_attr_nodes
seeds <- generate_next_seeds(
max_non_deps = integer(),
min_deps = integer(),
initial_seeds = lhs_attr_nodes,
nodes = nodes,
detset_limit = detset_limit
)
min_deps <- integer()
max_non_deps <- integer()
trace <- integer()
bijection_nodes <- to_nodes(
match(
bijection_candidate_nonfixed_indices,
lhs_nonfixed_indices
),
nodes
)
while (length(seeds) != 0) {
node <- seeds[sample.int(length(seeds), 1)]
while (!is.na(node)) {
if (nodes$visited[node]) {
if (nodes$category[node] == 3) { # dependency
min_infer <- is_minimal(node, nodes)
if (isTRUE(min_infer)) {
nodes$category[node] <- 2L
min_deps <- c(min_deps, node)
if (is.element(node, bijection_nodes)) {
lhs_index <- lhs_nonfixed_indices[nodes$bits[[node]]]
stopifnot(is.element(
lhs_index,
bijection_candidate_nonfixed_indices
))
if (store_cache)
return(list(lhs_index, partitions, TRUE))
else
return(list(lhs_index, TRUE))
}
}
if (isFALSE(min_infer))
nodes$category[node] <- 1L
}
if (nodes$category[node] == -3) { # non-dependency
max_infer <- is_maximal(node, nodes)
if (isTRUE(max_infer)) {
nodes$category[node] <- -2L
max_non_deps <- c(max_non_deps, node)
}
if (isFALSE(max_infer)) {
nodes$category[node] <- -1L
}
}
nodes$category[node] <- update_dependency_type(
node,
nodes,
min_deps,
max_non_deps
)
}else{
inferred_type <- infer_type(node, nodes)
if (!is.na(inferred_type)) {
nodes$category[node] <- inferred_type
}
if (nodes$category[node] == 0L) {
lhs_set <- lhs_nonfixed_indices[nodes$bits[[node]]]
cp <- compute_partitions(
rhs,
lhs_set,
partitions
)
result <- cp[[1]]
partitions <- cp[[2]]
if (result) {
min_infer <- is_minimal(node, nodes)
if (isFALSE(min_infer))
nodes$category[node] <- 1L
if (isTRUE(min_infer)) {
min_deps <- c(min_deps, node)
nodes$category[node] <- 2L
if (is.element(node, bijection_nodes)) {
lhs_index <- lhs_nonfixed_indices[nodes$bits[[node]]]
stopifnot(is.element(
lhs_index,
bijection_candidate_nonfixed_indices
))
if (store_cache)
return(list(lhs_index, partitions, TRUE))
else
return(list(lhs_index, TRUE))
}
}
if (is.na(min_infer))
nodes$category[node] <- 3L
}else{
max_infer <- is_maximal(node, nodes)
if (isFALSE(max_infer)) {
nodes$category[node] <- -1L
}
if (isTRUE(max_infer)) {
max_non_deps <- c(max_non_deps, node)
nodes$category[node] <- -2L
}
if (is.na(max_infer))
nodes$category[node] <- -3L
}
}
nodes$visited[node] <- TRUE
}
res <- pick_next_node(
node,
nodes,
trace,
min_deps,
max_non_deps
)
trace <- res[[2]]
nodes <- res[[3]]
min_deps <- res[[4]]
max_non_deps <- res[[5]]
node <- res[[1]]
}
seeds <- generate_next_seeds(
max_non_deps,
min_deps,
initial_seeds,
nodes,
detset_limit
)
}
if (store_cache)
list(
lapply(min_deps, \(md) lhs_nonfixed_indices[nodes$bits[[md]]]),
partitions,
FALSE
)
else
list(
lapply(min_deps, \(md) lhs_nonfixed_indices[nodes$bits[[md]]]),
FALSE
)
}
pick_next_node <- function(node, nodes, trace, min_deps, max_non_deps) {
if (nodes$category[node] == 3) { # candidate dependency
s <- nonvisited_children(node, nodes)
s <- remove_pruned_subsets(s, min_deps, nodes$bits)
if (length(s) == 0) {
min_deps <- c(min_deps, node)
nodes$category[node] <- 2L
}else{
trace <- c(node, trace)
return(list(min(s), trace, nodes, min_deps, max_non_deps))
}
}else if (nodes$category[node] == -3) { # candidate non-dependency
s <- nonvisited_parents(node, nodes)
s <- remove_pruned_supersets(s, max_non_deps, nodes$bits)
if (length(s) == 0) {
max_non_deps <- c(max_non_deps, node)
nodes$category[node] <- -2L
}else{
trace <- c(node, trace)
return(list(min(s), trace, nodes, min_deps, max_non_deps))
}
}
if (length(trace) == 0)
return(list(NA, trace, nodes, min_deps, max_non_deps))
list(trace[1], trace[-1], nodes, min_deps, max_non_deps)
}
remove_pruned_subsets <- function(subsets, supersets, bitsets) {
if (length(subsets) == 0 || length(supersets) == 0)
return(subsets)
check_pairs <- outer(
bitsets[subsets],
bitsets[supersets],
Vectorize(is_subset)
)
prune <- apply(check_pairs, 1, any)
subsets[!prune]
}
remove_pruned_supersets <- function(supersets, subsets, bitsets) {
if (length(subsets) == 0 || length(supersets) == 0)
return(supersets)
check_pairs <- outer(
bitsets[supersets],
bitsets[subsets],
Vectorize(is_superset)
)
prune <- rowSums(check_pairs) > 0
supersets[!prune]
}
generate_next_seeds <- function(
max_non_deps,
min_deps,
initial_seeds,
nodes,
detset_limit
) {
# Seed generation assumes that the empty set is known to be a non-determinant.
# The below is equivalent to beginning with a single empty seed, and having
# the empty set as an additional non-determinant. Being able to refer to the
# empty set directly would remove the special cases we have below for
# max_non_deps being empty, and for applying the first one.
# Nodes are completely unknown iff they're non-visited
stopifnot(
all(nodes$visited == (nodes$category != 0)),
!any(abs(nodes$category) == 3)
)
if (length(max_non_deps) == 0) {
# original DFD paper doesn't mention case where no maximal non-dependencies
# found yet, so this approach could be inefficient
seeds <- remove_pruned_subsets(
initial_seeds,
min_deps,
nodes$bits
)
# At generation time, all seed nodes are non-categorised, and nodes in
# general are non-categorised or minimal dependencies, because to be in this
# case the only explored nodes must be single-attribute nodes found to be
# minimal. i.e.:
stopifnot(
all(nodes$category[seeds] == 0),
all(nodes$category %in% c(0L, 2L))
)
}else{
seeds <- integer()
for (n in seq_along(max_non_deps)) {
nfd <- max_non_deps[[n]]
max_non_dep_c <- remove_pruned_subsets(initial_seeds, nfd, nodes$bits)
# paper condition is "seeds is empty", trimming cross-intersections
# by detset_limit means seeds can be empty before the end,
# which would cause the remaining nfds to start from scratch.
# we therefore just initiate the seeds on the first nfd, as
# intended anyway.
if (n == 1) {
seeds <- max_non_dep_c
}else{
seeds <- cross_intersection(seeds, max_non_dep_c, nodes, detset_limit)
}
}
}
remove_pruned_supersets(seeds, min_deps, nodes$bits)
}
cross_intersection <- function(seeds, max_non_dep, powerset, detset_limit) {
new_seed_full_indices <- integer()
for (dep in seeds) {
seed_bitset <- powerset$bits[[dep]]
for (set in max_non_dep) {
set_bitset <- powerset$bits[[set]]
new_seed_bitset <- seed_bitset | set_bitset
if (sum(new_seed_bitset) > detset_limit)
next
new_seed_bitset_index <- to_bitset_index(which(new_seed_bitset))
new_seed_full_indices <- c(new_seed_full_indices, new_seed_bitset_index)
}
}
seeds <- powerset$bitset_index[new_seed_full_indices]
seeds <- seeds[!is.na(seeds)]
minimise_seeds(seeds, powerset$bits)
}
to_bitset_index <- function(bits) {
sum(2^(bits - 1))
}
minimise_seeds <- function(seeds, bitsets) {
if (length(seeds) == 0)
return(seeds)
# remove duplicates first instead of comparing identical bitsets
unique_seeds <- unique(seeds)
n_seeds <- length(unique_seeds)
include <- rep(TRUE, length(unique_seeds))
for (n in seq_len(n_seeds - 1)) {
if (include[n]) {
for (m in seq.int(n + 1L, n_seeds)) {
if (include[[m]]) {
if (is_subset(bitsets[[unique_seeds[n]]], bitsets[[unique_seeds[m]]]))
include[m] <- FALSE
else{
if (is_superset(bitsets[[unique_seeds[n]]], bitsets[[unique_seeds[m]]])) {
include[n] <- FALSE
break
}
}
}
}
}
}
unique_seeds[include]
}
partition_computer <- function(df, accuracy, cache) {
threshold <- ceiling(nrow(df)*accuracy)
partitions_ui <- list(
# we could use the partkey directly as an index into a list of
# pre-allocated length, but this often requires a very large list that is
# slow to assign elements in, so we stick to matching on a growing list
# here.
# It would also require the partkey to be representable as an integer,
# rather than a double, which introduces a tighter constraint on the maximum
# number of columns df can have (nonfixed attrs instead of just LHS attrs).
# "Partition nodes" in this UI refer to IDs within the partition: these are
# different to those used in find_LHSs and powersets.
add_partition = function(partition_node, val, partitions) {
partitions$key <- c(partitions$key, partition_node)
partitions$value <- c(partitions$value, list(val))
partitions
},
get_with_index = function(index, partitions) {
partitions$value[[index]]
},
lookup_node = function(partition_node, partitions) {
match(partition_node, partitions$key)
}
)
check_FD_partition <- if (cache)
function(attr_indices, df, partitions)
check_FD_partition_stripped(attr_indices, df, partitions, partitions_ui)
else
function(attr_indices, df, partitions)
check_FD_partition_nclass(attr_indices, df, partitions, partitions_ui)
if (threshold < nrow(df)) {
check_AD <- if (cache)
function(df, rhs, lhs_set, partitions, threshold, limit)
check_AD_cache(df, rhs, lhs_set, partitions, threshold, limit, partitions_ui)
else
function(df, rhs, lhs_set, partitions, threshold, limit)
check_AD_nocache(df, rhs, lhs_set, partitions, threshold, limit, partitions_ui)
function(rhs, lhs_set, partitions) {
approximate_dependencies(
df,
rhs,
lhs_set,
partitions,
threshold,
check_FD_partition,
check_AD
)
}
}else
function(rhs, lhs_set, partitions) {
exact_dependencies(
df,
rhs,
lhs_set,
partitions,
check_FD_partition
)
}
}
exact_dependencies <- function(
df,
rhs,
lhs_set,
partitions,
check_FD_partition
) {
res1 <- check_FD_partition(lhs_set, df, partitions)
part_lhs <- res1[[1]]
partitions <- res1[[2]]
if (part_lhs == 0)
return(list(TRUE, partitions))
res2 <- check_FD_partition(union(lhs_set, rhs), df, partitions)
part_union <- res2[[1]]
partitions <- res2[[2]]
list(part_union == part_lhs, partitions)
}
approximate_dependencies <- function(
df,
rhs,
lhs_set,
partitions,
threshold,
check_FD_partition,
check_AD
) {
limit <- nrow(df) - threshold
# cheaper bounds checks:
# nrow(df) - (part_lhs - part_union) <= majorities_total <= nrow(df) - part_lhs
res1 <- check_FD_partition(lhs_set, df, partitions)
part_lhs <- res1[[1]]
partitions <- res1[[2]]
if (part_lhs <= limit)
return(list(TRUE, partitions))
res2 <- check_FD_partition(union(lhs_set, rhs), df, partitions)
part_union <- res2[[1]]
partitions <- res2[[2]]
if (part_lhs - part_union > limit)
return(list(FALSE, partitions))
check_AD(df, rhs, lhs_set, partitions, threshold, limit)
}
check_FD_partition_nclass <- function(
attr_indices,
df,
partitions,
partitions_ui
) {
# This only returns the number |p| of equivalence classes in the partition p,
# not its contents. This is less demanding on memory than storing stripped
# partitions, but we cannot efficiently calculate the partition for supersets.
partition_node <- to_partition_node(attr_indices)
partkey <- partitions_ui$lookup_node(partition_node, partitions)
if (!is.na(partkey)) {
return(list(partitions_ui$get_with_index(partkey, partitions), partitions))
}
df_attrs_only <- df[, attr_indices, drop = FALSE]
n_remove <- sum(duplicated(df_attrs_only))
partitions <- partitions_ui$add_partition(partition_node, n_remove, partitions)
list(n_remove, partitions)
}
check_FD_partition_stripped <- function(
attr_indices,
df,
partitions,
partitions_ui
) {
attr_nodes <- to_partition_nodes(attr_indices)
partition_node <- sum(attr_nodes)
partkey <- partitions_ui$lookup_node(partition_node, partitions)
if (!is.na(partkey)) {
sp <- partitions_ui$get_with_index(partkey, partitions)
return(list(sum(lengths(sp)) - length(sp), partitions))
}
subset_nodes <- partition_node - attr_nodes
subsets_match <- vapply(
subset_nodes,
partitions_ui$lookup_node,
integer(1L),
partitions
)
if (sum(!is.na(subsets_match)) >= 2) {
indices <- which(!is.na(subsets_match))[1:2]
sp <- stripped_partition_product(
partitions_ui$get_with_index(subsets_match[indices[[1]]], partitions),
partitions_ui$get_with_index(subsets_match[indices[[2]]], partitions),
nrow(df)
)
}else{
if (sum(!is.na(subsets_match)) == 1) {
index <- which(!is.na(subsets_match))
small_subset <- attr_indices[[index]]
small_subset_node <- attr_nodes[[index]]
main_partition <- partitions_ui$get_with_index(
subsets_match[index],
partitions
)
subres <- check_FD_partition_stripped(
small_subset,
df,
partitions,
partitions_ui
)
partitions <- subres[[2]]
small_partition <- partitions_ui$get_with_index(
partitions_ui$lookup_node(small_subset_node, partitions),
partitions
)
sp <- stripped_partition_product(
main_partition,
small_partition,
nrow(df)
)
}else{
sp <- fsplit_rows(df, attr_indices)
sp <- unname(sp[lengths(sp) > 1])
}
}
partitions <- partitions_ui$add_partition(partition_node, sp, partitions)
list(sum(lengths(sp)) - length(sp), partitions)
}
check_AD_cache <- function(
df,
rhs,
lhs_set,
partitions,
threshold,
limit,
partitions_ui
) {
# e(lhs_set -> rhs)
lhs_set_partition_node <- to_partition_node(lhs_set)
rhs_partition_node <- to_partition_nodes(rhs)
ind_lhs <- partitions_ui$lookup_node(lhs_set_partition_node, partitions)
stopifnot(!is.na(ind_lhs))
classes_lhs <- partitions_ui$get_with_index(ind_lhs, partitions)
classes_lhs_node <- lhs_set_partition_node + rhs_partition_node
ind_union <- partitions_ui$lookup_node(classes_lhs_node, partitions)
stopifnot(!is.na(ind_union))
classes_union <- partitions_ui$get_with_index(ind_union, partitions)
e <- 0L
Ts <- integer()
for (c in classes_union) {
Ts[c[1]] <- length(c)
}
for (c in classes_lhs) {
m <- 1L
for (ts in c) {
m <- max(m, Ts[ts], na.rm = TRUE)
}
e <- e + length(c) - m
}
list(e <= limit, partitions)
}
check_AD_nocache <- function(
df,
rhs,
lhs_set,
partitions,
threshold,
limit,
partitions_ui
) {
# This is a quick working version I put together to replace the non-working
# original. The quicker version from Tane requires cache = TRUE for stripped
# partition information.
majority_size <- function(x) {
max(tabulate(x))
}
splitted <- df[[rhs]]
splitter <- df[, lhs_set, drop = FALSE]
rhs_split <- fsplit(splitted, splitter)
majorities_total <- sum(vapply(
rhs_split,
majority_size,
integer(1)
))
list(majorities_total >= threshold, partitions)
}
to_partition_node <- function(element_indices) {
as.integer(sum(2^(element_indices - 1L)))
}
to_partition_nodes <- function(element_indices) {
as.integer(2^(element_indices - 1L))
}
stripped_partition_product <- function(sp1, sp2, n_rows) {
# vectorised union of stripped partitions to replace algorithm from Tane
if (length(sp1) == 0L || length(sp2) == 0L)
return(list())
tab <- rep(NA_integer_, n_rows)
tab[unlist(sp1)] <- rep(seq_along(sp1), lengths(sp1))
tab2 <- rep(NA_integer_, n_rows)
tab2[unlist(sp2)] <- rep(seq_along(sp2), lengths(sp2))
in_both <- which(!is.na(tab) & !is.na(tab2))
tab_both <- paste(tab[in_both], tab2[in_both])
# not pre-factoring with specified levels results in split calling
# order(tab_both), which can be very slow for long tab_both
tab_both <- factor(tab_both, levels = unique(tab_both), ordered = FALSE)
sp <- split(in_both, tab_both, drop = TRUE)
unname(sp[lengths(sp) >= 2])
}
fsplit <- function(splitted, splitter) {
# Column contents are known to be integer, so we paste them together before
# calling split. This is much faster than the iterated pasting of multiple f
# elements done by interaction().
# splitter is unnamed in case any attributes have names like "sep"
# that would be used as arguments for split
single_splitter <- do.call(paste, unname(splitter))
split(splitted, single_splitter, drop = TRUE)
}
fsplit_rows <- function(df, attr_indices) {
fsplit(seq_len(nrow(df)), df[, attr_indices, drop = FALSE])
}
add_simple_key_deps <- function(
dependencies,
determinant_keys,
dependant_keys,
valid_dependant_attrs
) {
nonkey_dependants <- setdiff(valid_dependant_attrs, dependant_keys)
dependencies[nonkey_dependants] <- lapply(
dependencies[nonkey_dependants],
\(dets) c(as.list(determinant_keys), dets)
)
dependencies[dependant_keys] <- lapply(
dependant_keys,
\(key) c(as.list(setdiff(determinant_keys, key)), dependencies[[key]])
)
dependencies
}
add_deps_implied_by_bijections <- function(
dependencies,
bijections,
nonfixed,
column_names
) {
for (b in bijections) {
first_index <- nonfixed[[b[[1]]]]
# add the bijection
for (nonfixed_index in b[-1]) {
replacement <- nonfixed[[nonfixed_index]]
dependencies[[replacement]] <- c(
first_index,
setdiff(dependencies[[first_index]], replacement)
)
stopifnot(!anyDuplicated(dependencies[[nonfixed_index]]))
}
# add dependencies implied by the bijection
# only needed when bijection attribute is earlier than dependant, since
# later ones were added before the bijection was known
for (rhs in setdiff(seq_along(dependencies), match(nonfixed[b], column_names))) {
for (nonfixed_index in b[-1]) {
replacement <- nonfixed[[nonfixed_index]]
if (match(replacement, column_names) < rhs) {
dependencies[[rhs]] <- union(
dependencies[[rhs]],
lapply(
Filter(\(d) is.element(first_index, d), dependencies[[rhs]]),
\(d) c(setdiff(d, first_index), replacement)
)
)
}
stopifnot(!anyDuplicated(dependencies[[rhs]]))
}
}
}
dependencies
}
add_deps_implied_by_simple_keys <- function(
dependencies,
determinant_keys,
dependant_keys,
valid_dependant_attrs
) {
# transfer determinants of kept dependant key to others
if (length(dependant_keys) > 0) {
first_dep <- dependant_keys[[1]]
deps <- setdiff(dependencies[[first_dep]], as.list(determinant_keys))
for (key in dependant_keys) {
replacements <- setdiff(determinant_keys, key)
dependencies[[key]] <- c(deps, as.list(replacements))
stopifnot(!anyDuplicated(dependencies[[key]]))
}
}
# swap determinant keys around in compound determinants
if (length(determinant_keys) > 0) {
first_det <- determinant_keys[[1]]
for (rhs in setdiff(valid_dependant_attrs, dependant_keys)) {
for (replacement in determinant_keys[-1]) {
dependencies[[rhs]] <- c(
dependencies[[rhs]],
lapply(
Filter(
\(d) is.element(first_det, d) && length(d) > 1,
dependencies[[rhs]]
),
\(d) c(setdiff(d, first_det), replacement)
)
)
stopifnot(!anyDuplicated(dependencies[[rhs]]))
}
}
}
dependencies
}
filter_nonflat_dependencies <- function(
dependencies,
detset_limit
) {
lapply(
dependencies,
\(x) {
if (length(x) == 0)
return(x[FALSE])
wanted <- lengths(x) <= detset_limit
x[wanted]
}
)
}
flatten <- function(dependencies, attributes) {
result <- list()
for (i in seq_along(dependencies)) {
rhs <- names(dependencies)[i]
result <- c(
result,
lapply(dependencies[[i]], \(lhs) list(lhs, rhs))
)
}
functional_dependency(result, attributes)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.