Nothing
test_that('check mars opt', {
skip_if_not_installed("earth")
skip_if_not_installed("modeldata")
set.seed(36323)
check_pruning <- function(x, ...) {
rlang::eval_tidy(x$call$pmethod) == "backward"
}
mod_1 <-
bagger(
mpg ~ .,
data = mtcars,
base_model = "MARS",
control = control_bag(var_imp = FALSE, extract = check_pruning),
pmethod = "backward"
)
expect_true(all(unlist(mod_1$model_df$extras)))
expect_true(is.null(mod_1$imp))
check_folds <- function(x, ...) {
rlang::eval_tidy(x$call$pmethod) == "backward" &
rlang::eval_tidy(x$call$nfold) == "5" &
is.null(x$glm.coefficients)
}
mod_2 <-
bagger(
mpg ~ .,
data = mtcars,
base_model = "MARS",
control = control_bag(var_imp = TRUE, extract = check_folds),
nfold = 5,
pmethod = "backward"
)
expect_true(all(unlist(mod_2$model_df$extras)))
expect_true(inherits(mod_2$imp, "tbl_df"))
check_classif <- function(x, ...) {
!is.null(x$glm.coefficients)
}
# For correct random numbers
if (compareVersion(as.character(getRversion()), "3.6.0") > 0) {
expect_warning(RNGkind(sample.kind = "Rounding"))
}
set.seed(2234)
expect_warning(
mod_3 <-
bagger(
Class ~ .,
data = two_class_dat,
base_model = "MARS",
control = control_bag(var_imp = TRUE, extract = check_classif)
),
"fitted probabilities numerically 0"
)
expect_true(all(unlist(mod_3$model_df$extras)))
expect_true(inherits(mod_3$imp, "tbl_df"))
})
# ------------------------------------------------------------------------------
test_that('check model reduction', {
skip_if_not_installed("earth")
set.seed(36323)
reduced <-
bagger(
mpg ~ .,
data = mtcars,
base_model = "MARS",
times = 3
)
expect_false(is.matrix(reduced$model_df$model[[1]]$fit$y))
expect_equal(reduced$model_df$model[[1]]$fit$call, rlang::call2("dummy_call"))
expect_equal(reduced$model_df$model[[1]]$fit$residuals, numeric(0))
set.seed(36323)
full <-
bagger(
mpg ~ .,
data = mtcars,
base_model = "MARS",
times = 3,
control = control_bag(reduce = FALSE)
)
expect_true(is.matrix(full$model_df$model[[1]]$fit$y))
expect_true(is.call(full$model_df$model[[1]]$fit$call))
expect_true(is.matrix(full$model_df$model[[1]]$fit$residuals))
})
# ------------------------------------------------------------------------------
test_that('check MARS parsnip interface', {
skip_if_not_installed("earth")
skip_if_not_installed("modeldata")
set.seed(4779)
expect_error(
reg_mod <- bag_mars(num_terms = 5, prod_degree = 2) %>%
set_engine("earth", times = 3) %>%
set_mode("regression") %>%
fit(mpg ~ ., data = mtcars),
regexp = NA
)
expect_true(
all(purrr::map_lgl(reg_mod$fit$model_df$model, ~ inherits(.x, "model_fit")))
)
expect_true(
all(purrr::map_lgl(reg_mod$fit$model_df$model, ~ inherits(.x$fit, "earth")))
)
expect_error(
reg_mod_pred <- predict(reg_mod, mtcars[1:5, -1]),
regexp = NA
)
expect_true(tibble::is_tibble(reg_mod_pred))
expect_equal(nrow(reg_mod_pred), 5)
expect_equal(names(reg_mod_pred), ".pred")
# ----------------------------------------------------------------------------
set.seed(4779)
expect_error(
reg_class <- bag_mars(num_terms = 5, prod_degree = 2) %>%
set_engine("earth", times = 3) %>%
set_mode("classification") %>%
fit(Class ~ ., data = two_class_dat),
regexp = NA
)
expect_true(
all(purrr::map_lgl(reg_class$fit$model_df$model, ~ inherits(.x, "model_fit")))
)
expect_true(
all(purrr::map_lgl(reg_class$fit$model_df$model, ~ inherits(.x$fit, "earth")))
)
expect_error(
reg_class_pred <- predict(reg_class, two_class_dat[1:5, -3]),
regexp = NA
)
expect_true(tibble::is_tibble(reg_class_pred))
expect_equal(nrow(reg_class_pred), 5)
expect_equal(names(reg_class_pred), ".pred_class")
expect_error(
reg_class_prob <- predict(reg_class, two_class_dat[1:5, -3], type = "prob"),
regexp = NA
)
expect_true(tibble::is_tibble(reg_class_prob))
expect_equal(nrow(reg_class_prob), 5)
expect_equal(names(reg_class_prob), c(".pred_Class1", ".pred_Class2"))
expect_output(print(bag_mars(num_terms = 3)))
expect_equal(update(bag_mars(), num_terms = 3), bag_mars(num_terms = 3))
expect_equal(update(bag_mars(), prod_degree = 1), bag_mars(prod_degree = 1))
expect_equal(update(bag_mars(), prune_method = "none"), bag_mars(prune_method = "none"))
})
test_that('mode specific package dependencies', {
skip_if_not_installed("earth")
expect_identical(
get_from_env(paste0("bag_mars", "_pkgs")) %>%
dplyr::filter(engine == "earth", mode == "classification") %>%
dplyr::pull(pkg),
list(c("earth", "baguette"))
)
expect_identical(
get_from_env(paste0("bag_mars", "_pkgs")) %>%
dplyr::filter(engine == "earth", mode == "regression") %>%
dplyr::pull(pkg),
list(c("earth", "baguette"))
)
})
test_that('case weights', {
skip_if_not_installed("earth")
set.seed(1)
wts <- runif(nrow(mtcars))
expect_error({
set.seed(1)
wts_fit <- bagger(mpg ~ ., data = mtcars, weights = wts, base_model = "MARS")
},
regexp = NA
)
set.seed(1)
fit <- bagger(mpg ~ ., data = mtcars, base_model = "MARS")
expect_true(!identical(wts_fit$imp, fit$imp))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.