bartMachineArr | R Documentation |
If BART creates models that are variable, running many on the same dataset and averaging is a good strategy. This function is a convenience method for this procedure.
bartMachineArr(bart_machine, R = 10)
bart_machine |
An object of class “bartMachine”. |
R |
The number of replicated BART models in the array. |
A bartMachineArr
object which is just a list of the R
bartMachine models.
Adam Kapelner
#Regression example
## Not run:
#generate Friedman data
set.seed(11)
n = 200
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi* X[ ,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[ ,4] + 5 * X[,5] + rnorm(n)
##build BART regression model
bart_machine = bartMachine(X, y)
bart_machine_arr = bartMachineArr(bart_machine)
#Classification example
data(iris)
iris2 = iris[51 : 150, ] #do not include the third type of flower for this example
iris2$Species = factor(iris2$Species)
bart_machine = bartMachine(iris2[ ,1:4], iris2$Species)
bart_machine_arr = bartMachineArr(bart_machine)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.