View source: R/bart_package_inits.R
get_var_counts_over_chain | R Documentation |
Computes the variable inclusion counts for a BART model.
get_var_counts_over_chain(bart_machine, type = "splits")
bart_machine |
An object of class “bartMachine”. |
type |
If “splits”, then the number of times each variable is chosen for a splitting rule is computed. If “trees”, then the number of times each variable appears in a tree is computed. |
Returns a matrix of counts of each predictor across all trees by Gibbs sample. Thus, the dimension is num_interations_after_burn_in
by p
(where p
is the number of predictors after dummifying factors and adding missingness dummies if specified by use_missing_data_dummies_as_covars
).
Adam Kapelner and Justin Bleich
get_var_props_over_chain
## Not run:
#generate Friedman data
set.seed(11)
n = 200
p = 10
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi* X[ ,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[ ,4] + 5 * X[,5] + rnorm(n)
##build BART regression model
bart_machine = bartMachine(X, y, num_trees = 20)
#get variable inclusion counts
var_counts = get_var_counts_over_chain(bart_machine)
print(var_counts)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.