View source: R/bart_package_predicts.R
calc_credible_intervals | R Documentation |
Generates credible intervals for \hat{f}(x)
for a specified set of observations.
calc_credible_intervals(bart_machine, new_data,
ci_conf = 0.95)
bart_machine |
An object of class “bartMachine”. |
new_data |
A data frame containing observations at which credible intervals for |
ci_conf |
Confidence level for the credible intervals. The default is 95%. |
This interval is the appropriate quantiles based on the confidence level, ci_conf
, of the predictions
for each of the Gibbs samples post-burn in.
Returns a matrix of the lower and upper bounds of the credible intervals for each observation in new_data
.
This function is parallelized by the number of cores set in set_bart_machine_num_cores
.
Adam Kapelner and Justin Bleich
calc_prediction_intervals
, bart_machine_get_posterior
## Not run:
#generate Friedman data
set.seed(11)
n = 200
p = 5
X = data.frame(matrix(runif(n * p), ncol = p))
y = 10 * sin(pi* X[ ,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[ ,4] + 5 * X[,5] + rnorm(n)
##build BART regression model
bart_machine = bartMachine(X, y)
#get credible interval
cred_int = calc_credible_intervals(bart_machine, X)
print(head(cred_int))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.