View source: R/bart_package_plots.R
plot_y_vs_yhat | R Documentation |
Generates a plot actual versus fitted values and corresponding credible intervals or prediction intervals for the fitted values.
plot_y_vs_yhat(bart_machine, Xtest = NULL, ytest = NULL,
credible_intervals = FALSE, prediction_intervals = FALSE,
interval_confidence_level = 0.95)
bart_machine |
An object of class “bartMachine”. |
Xtest |
Optional argument for test data. If included, BART computes fitted values at the rows of |
ytest |
Optional argument for test data. Vector of observed values corresponding to the rows of |
credible_intervals |
If TRUE, Bayesian credible intervals are computed using the quantiles of the posterior distribution of |
prediction_intervals |
If TRUE, Bayesian predictive intervals are computed using the a draw of from |
interval_confidence_level |
Desired level of confidence for credible or prediction intervals. |
None.
This function is parallelized by the number of cores set in set_bart_machine_num_cores
.
Adam Kapelner and Justin Bleich
bart_machine_get_posterior
, calc_credible_intervals
, calc_prediction_intervals
## Not run:
#generate linear data
set.seed(11)
n = 500
p = 3
X = data.frame(matrix(runif(n * p), ncol = p))
y = 3*X[ ,1] + 2*X[ ,2] +X[ ,3] + rnorm(n)
##build BART regression model
bart_machine = bartMachine(X, y)
##generate plot
plot_y_vs_yhat(bart_machine)
#generate plot with prediction bands
plot_y_vs_yhat(bart_machine, prediction_intervals = TRUE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.