Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
echo = T,
eval = T,
include = T
)
## ----results='hide', message=F------------------------------------------------
lapply(c('bayesMeanScale', 'rstanarm', 'flextable', 'magrittr', 'MASS'), function(x) base::library(x, character.only=T))
## -----------------------------------------------------------------------------
# Simulate the data #
modelData <- rstanarm::wells
modelData$assoc <- ifelse(modelData$assoc==1, 'Y', 'N')
binomialModel <- stan_glm(switch ~ dist*educ + arsenic + I(arsenic^2) + assoc,
data = modelData,
family = binomial,
refresh = 0)
## -----------------------------------------------------------------------------
bayesPredsF(binomialModel,
at = list(arsenic = c(.82, 1.3, 2.2)))
## -----------------------------------------------------------------------------
bayesPredsF(binomialModel,
at = list(arsenic = c(.82, 1.3, 2.2)),
at_means = TRUE)
## -----------------------------------------------------------------------------
crabs <- read.table("https://users.stat.ufl.edu/~aa/cat/data/Crabs.dat", header=T)
poissonModel <- stan_glm(sat ~ weight + width,
data = crabs,
family = poisson,
refresh = 0)
bayesCountPredsF(poissonModel,
counts = c(0,1,2),
at = list(weight=c(2,3,4)))
## -----------------------------------------------------------------------------
binomialAME <- bayesMargEffF(binomialModel,
marginal_effect = 'arsenic',
start_value = 2.2,
end_value = .82)
binomialAME
head(binomialAME$diffDraws)
## -----------------------------------------------------------------------------
binomialAMEInstant <- bayesMargEffF(binomialModel,
marginal_effect = 'arsenic',
start_value = 'instantaneous',
end_value = 'instantaneous')
binomialAMEInstant
## -----------------------------------------------------------------------------
bayesMargEffF(binomialModel,
marginal_effect = c('arsenic', 'dist'),
start_value = list(2.2, 64.041),
end_value = list(.82, 21.117))
## -----------------------------------------------------------------------------
binomialAMEInteraction <- bayesMargEffF(binomialModel,
marginal_effect = 'dist',
start_value = 'instantaneous',
end_value = 'instantaneous',
at = list(educ=c(0, 5, 8)))
binomialAMEInteraction
## -----------------------------------------------------------------------------
countMarg <- bayesCountMargEffF(poissonModel,
counts = c(0,1,2),
marginal_effect = 'width',
start_value = 25,
end_value = 20,
at = list(weight=c(2,3,4)))
countMarg
## -----------------------------------------------------------------------------
binomialMEMInteraction <- bayesMargEffF(binomialModel,
marginal_effect = 'dist',
start_value = 64.041,
end_value = 21.117,
at = list(educ=c(0, 5, 8)),
at_means = TRUE)
binomialMEMInteraction
## -----------------------------------------------------------------------------
bayesMargCompareF(binomialAMEInteraction)
## -----------------------------------------------------------------------------
bayesMargCompareF(countMarg)
## -----------------------------------------------------------------------------
propOddsModel <- stan_polr(Sat ~ Infl + Type,
data = housing,
prior = rstanarm::R2(0.2, 'mean'),
refresh = 0)
bayesOrdinalPredsF(propOddsModel,
at = list(Type=c("Tower", "Apartment")))
propOddsMarg <- bayesOrdinalMargEffF(propOddsModel,
marginal_effect = "Infl",
start_value = "Low",
end_value = "High",
at = list(Type=c("Tower", "Apartment")))
propOddsMarg
bayesMargCompareF(propOddsMarg)
## ----echo=F-------------------------------------------------------------------
data.frame(Class = c(rep("stanreg", 6), "stanreg; polr"),
Family = c('beta', 'binomial', 'Gamma', 'gaussian', 'neg_binomial_2', 'poisson', 'binomial'),
Links = c("logit; probit; cloglog", "logit; probit; cloglog", "inverse; log; identity", "identity", "identity; log; sqrt", "identity; log; sqrt", 'logit; probit; cloglog')) %>%
qflextable()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.