Nothing
#' Example of a time series from carparts
#'
#' A monthly time series from the `carparts` dataset, 51 observations, Jan 1998 - Mar 2002.
#'
#' @format
#' Univariate time series of class \link[stats]{ts}.
#'
#' @references
#' Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D., (2008).
#' Forecasting with exponential smoothing: the state space approach.
#' Springer Science & Business Media.
#'
#' Godahewa, R., Bergmeir, C., Webb, G., Hyndman, R., & Montero-Manso, P. (2020).
#' Car Parts Dataset (without Missing Values) (Version 2)
#' \doi{10.5281/zenodo.4656021}
#'
#' @source
#' Godahewa, R., Bergmeir, C., Webb, G., Hyndman, R.J., & Montero-Manso, P. (2020).
#' Car Parts Dataset (without Missing Values) (Version 2)
#' \doi{10.5281/zenodo.4656021}
"carparts_example"
#' Infant Mortality grouped time series dataset
#'
#' A yearly grouped time series dataset, from 1901 to 2003, of infant mortality counts (deaths) in Australia;
#' disaggregated by state (see below), and sex (male and female).
#'
#' States: New South Wales (NSW), Victoria (VIC), Queensland (QLD), South Australia (SA), Western Australia
#' (WA), Northern Territory (NT), Australian Capital Territory (ACT), and Tasmania (TAS).
#'
#' @format
#' List of time series of class \link[stats]{ts}.
#'
#' @source
#' hts package [CRAN](https://cran.r-project.org/package=hts)
#'
#' @references
#' Hyndman, R.J., Ahmed, R.A., Athanasopoulos, G., Shang, H.L. (2011).
#' Optimal combination forecasts for hierarchical time series.
#' Computational Statistics and Data Analysis, 55(9), 2579-2589.
"infantMortality"
#' Example of a time series from the M3 forecasting competition
#'
#' A monthly time series, from the M3 forecasting competition ("N1485").
#'
#' @format
#' List of time series of class \link[stats]{ts}.
#'
#'
#' @source [https://forecasters.org/resources/time-series-data/m3-competition/](https://forecasters.org/resources/time-series-data/m3-competition/)
"M3_example"
#' Extreme market events dataset
#'
#' Count time series of extreme market events in five economic sectors.
#' The data refer to the trading days between 2004/12/31 and 2018/12/19 (3508 trading days in total).
#'
#' The counts are computed by considering 29 companies included in the Euro Stoxx
#' 50 index and observing if the value of the CDS spread on a given day exceeds
#' the 90-th percentile of its distribution in the last trading year.
#' The companies are divided in the following sectors: Financial (FIN), Information
#' and Communication Technology (ICT), Manufacturing (MFG), Energy (ENG), and Trade (TRD).
#'
#' There are 6 time series:
#' - 5 bottom time series, corresponding to the daily counts for each sector
#' - 1 upper time series, which is the sum of all the bottom (ALL)
#'
#' @format
#' A multivariate time series of class \link[stats]{ts}.
#'
#' @source
#' Zambon, L., Agosto, A., Giudici, P., Corani, G. (2024).
#' *Properties of the reconciled distributions for Gaussian and count forecasts*.
#' International Journal of Forecasting (in press).
#' \doi{10.1016/j.ijforecast.2023.12.004}.
#'
#' @references
#' Zambon, L., Agosto, A., Giudici, P., Corani, G. (2024).
#' *Properties of the reconciled distributions for Gaussian and count forecasts*.
#' International Journal of Forecasting (in press).
#' \doi{10.1016/j.ijforecast.2023.12.004}.
#'
#' Agosto, A. (2022).
#' *Multivariate Score-Driven Models for Count Time Series to Assess Financial Contagion*.
#' \doi{10.2139/ssrn.4119895}
"extr_mkt_events"
#' Base forecasts for the extreme market events dataset
#'
#' Base forecasts for the `extr_mkt_events` dataset, computed using the model by
#' Agosto, A. (2022).
#' *Multivariate Score-Driven Models for Count Time Series to Assess Financial Contagion*.
#' \doi{10.2139/ssrn.4119895}.
#'
#' The predictive distribution for the bottom time series is a multivariate negative
#' binomial with a static vector of dispersion parameters and a time-varying vector
#' of location parameters following a score-driven dynamics.
#' The base forecasts for the upper time series are computed using a univariate version of this model.
#' They are in-sample forecasts: for each training instant, they are computed for
#' time t+1 by conditioning on the counts observed up to time t.
#'
#' @format
#' A list `extr_mkt_events_basefc` containing
#' \describe{
#' \item{`extr_mkt_events_basefc$mu`}{data frame of the base forecast means, for each day}
#' \item{`extr_mkt_events_basefc$size`}{data frame of the static base forecast size parameters}
#' }
#'
#' @source
#' Agosto, A. (2022).
#' *Multivariate Score-Driven Models for Count Time Series to Assess Financial Contagion*.
#' \doi{10.2139/ssrn.4119895}
#'
#' @references
#' Agosto, A. (2022).
#' *Multivariate Score-Driven Models for Count Time Series to Assess Financial Contagion*.
#' \doi{10.2139/ssrn.4119895}
#'
#' Zambon, L., Agosto, A., Giudici, P., Corani, G. (2024).
#' *Properties of the reconciled distributions for Gaussian and count forecasts*.
#' International Journal of Forecasting (in press).
#' \doi{10.1016/j.ijforecast.2023.12.004}.
"extr_mkt_events_basefc"
#' Example of hierarchical forecasts for a store from the M5 competition
#'
#' This dataset contains forecasts for the hierarchy of time series related to the store `CA_1` from the M5 competition.
#'
#' The store `CA_1` contains 3049 item level time series and 11 aggregate time series:
#' * Store level aggregation (`CA_1`)
#' * Category level aggregations (`HOBBIES`, `HOUSEHOLD`, `FOODS`)
#' * Department level aggregations (`HOBBIES_1`, `HOBBIES_2`, `HOUSEHOLD_1`, `HOUSEHOLD_2`, `FOODS_1`, `FOODS_2`, `FOODS_3`)
#'
#' Forecasts are generated with the function `forecast` and the model `adam` from the package `smooth`.
#' * The models for the bottom time series are selected with multiplicative Gamma error term (`MNN`);
#' * The models for the upper time series (`AXZ`) is selected with Gaussian additive error term, seasonality selected based on information criterion.
#'
#' The raw data was downloaded with the package `m5`.
#'
#' @format
#' A list containing:
#' * `upper`: a list of 11 elements each representing an aggregation level. Each element contains: `mu`, `sigma` the mean and standard deviation of the Gaussian forecast, `actual` the actual value, `residuals` the residuals of the model used to estimate forecasts covariance.
#' * `lower`: a list of 3049 elements each representing a forecast for each item. Each element contains `pmf` the probability mass function of the item level forecast, `actual` the actual value.
#' * `A`: the aggregation matrix for A.
#' * `S`: the S matrix for the hierarchy.
#' * `Q_u`: scaling factors for computing MASE on the upper forecasts.
#' * `Q_b`: scaling factors for computing MASE on the bottom forecasts.
#'
#' @references
#' Joachimiak K (2022). *m5: 'M5 Forecasting' Challenges Data*. R package version 0.1.1, <https://CRAN.R-project.org/package=m5>.
#'
#' Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilis. (2020). *The M5 Accuracy competition: Results, findings and conclusions.* International Journal of Forecasting 38(4) 1346-1364. \doi{10.1016/j.ijforecast.2021.10.009}
#'
#' Svetunkov I (2023). *smooth: Forecasting Using State Space Models*. R package version 4.0.0, <https://CRAN.R-project.org/package=smooth>.
#'
#' @source
#' Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilis. (2020). *The M5 Accuracy competition: Results, findings and conclusions.* International Journal of Forecasting 38(4) 1346-1364. \doi{10.1016/j.ijforecast.2021.10.009}
"M5_CA1_basefc"
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.