Nothing
fit1 <- manec_example$mod_fits[["nec4param"]]
fit2 <- manec_example$mod_fits[["ecx4param"]]
test_that("expand_nec defaults work for nec model", {
if (Sys.getenv("NOT_CRAN") == "") {
skip_on_cran()
}
nec_fit <- expand_nec(fit1, fit1$bayesnecformula, model = "nec4param") |>
suppressWarnings()
expect_equal(names(nec_fit), c("fit", "model", "init", "bayesnecformula",
"pred_vals", "top",
"beta", "ne", "f", "bot", "d",
"slope", "ec50", "dispersion", "predicted_y",
"residuals", "ne_posterior", "ne_type"))
expect_equal(class(nec_fit$fit), "brmsfit")
expect_equal(nec_fit$model, "nec4param")
expect_equal(dim(nec_fit$pred_vals$posterior), c(100, 1000))
expect_equal(dim(nec_fit$pred_vals$data), c(1000, 4))
expect_equal(range(nec_fit$pred_vals$data$x), c(0.03234801, 3.22051966))
})
test_that("expand_nec arguments work for nec model", {
if (Sys.getenv("NOT_CRAN") == "") {
skip_on_cran()
}
nec_fit <- expand_nec(fit1, fit1$bayesnecformula, model = "nec4param",
x_range = c(0.01, 4), resolution = 20) |>
suppressWarnings()
expect_equal(names(nec_fit), c("fit", "model", "init", "bayesnecformula",
"pred_vals", "top",
"beta", "ne", "f", "bot", "d",
"slope", "ec50", "dispersion", "predicted_y",
"residuals", "ne_posterior", "ne_type"))
expect_equal(class(nec_fit$fit), "brmsfit")
expect_equal(nec_fit$model, "nec4param")
expect_equal(dim(nec_fit$pred_vals$posterior), c(100, 20))
expect_equal(dim(nec_fit$pred_vals$data), c(20, 4))
expect_equal(range(nec_fit$pred_vals$data$x), c(0.01, 4))
})
test_that("expand_ecx defaults work for ecx model", {
if (Sys.getenv("NOT_CRAN") == "") {
skip_on_cran()
}
ecx_fit <- expand_nec(fit2, fit2$bayesnecformula, model = "ecx4param") |>
suppressWarnings()
expect_equal(names(ecx_fit), c("fit", "model", "init", "bayesnecformula",
"pred_vals", "top",
"beta", "ne", "f", "bot", "d",
"slope", "ec50", "dispersion", "predicted_y",
"residuals", "ne_posterior", "ne_type"))
expect_equal(class(ecx_fit$fit), "brmsfit")
expect_equal(ecx_fit$model, "ecx4param")
expect_equal(dim(ecx_fit$pred_vals$posterior), c(100, 1000))
expect_equal(dim(ecx_fit$pred_vals$data), c(1000, 4))
expect_equal(range(ecx_fit$pred_vals$data$x), c(0.03234801, 3.22051966))
})
test_that("expand_ecx arguments work for ecx model", {
if (Sys.getenv("NOT_CRAN") == "") {
skip_on_cran()
}
ecx_fit <- expand_nec(fit2, fit2$bayesnecformula, model = "ecx4param",
x_range = c(0.01, 4), resolution = 20) |>
suppressWarnings()
expect_equal(names(ecx_fit), c("fit", "model", "init", "bayesnecformula",
"pred_vals", "top",
"beta", "ne", "f", "bot", "d", "slope",
"ec50", "dispersion", "predicted_y",
"residuals", "ne_posterior", "ne_type"))
expect_equal(class(ecx_fit$fit), "brmsfit")
expect_equal(ecx_fit$model, "ecx4param")
expect_equal(dim(ecx_fit$pred_vals$posterior), c(100, 20))
expect_equal(dim(ecx_fit$pred_vals$data), c(20, 4))
expect_equal(range(ecx_fit$pred_vals$data$x), c(0.01, 4))
})
test_that("expand_ecx sig_val argument work for ecx model", {
if (Sys.getenv("NOT_CRAN") == "") {
skip_on_cran()
}
ecx_fit_a <- expand_nec(fit2, fit2$bayesnecformula, model = "ecx4param") |>
suppressWarnings()
ecx_fit_b <- expand_nec(fit2, fit2$bayesnecformula, model = "ecx4param",
sig_val = 0.2) |>
suppressWarnings()
expect_gt(ecx_fit_a$ne["Estimate"], ecx_fit_b$ne["Estimate"])
})
tt1 <- manec_example$mod_fits
formulas <- lapply(tt1, `[[`, "bayesnecformula")
test_null <- NULL
tt2 <- tt1["nec4param"]
test_that("expand_manec warnings work correctly", {
if (Sys.getenv("NOT_CRAN") == "") {
skip_on_cran()
}
expect_error(expand_manec(test_null))
expect_message(expand_manec(tt2, formulas[["nec4param"]]),
"Only nec4param is fitted, no model averaging done.")
expect_message(expand_manec(tt1, formulas),
"Fitted models are: nec4param ecx4param") |>
suppressWarnings()
})
test_that("expand_manec defaults work correctly", {
if (Sys.getenv("NOT_CRAN") == "") {
skip_on_cran()
}
tt3 <- expand_manec(tt1, formulas) |>
suppressMessages() |>
suppressWarnings()
expect_equal(dim(tt3$w_pred_vals$posterior), c(100, 1000))
expect_equal(dim(tt3$w_pred_vals$data), c(1000, 4))
expect_equal(range(tt3$w_pred_vals$data$x), c(0.03234801, 3.22051966))
})
test_that("expand_manec defaults work correctly", {
if (Sys.getenv("NOT_CRAN") == "") {
skip_on_cran()
}
tt4 <- expand_manec(tt1, formulas, x_range = c(0.01, 4), resolution = 20) |>
suppressMessages() |>
suppressWarnings()
expect_equal(dim(tt4$w_pred_vals$posterior), c(100, 20))
expect_equal(dim(tt4$w_pred_vals$data), c(20, 4))
expect_equal(range(tt4$w_pred_vals$data$x), c(0.01, 4))
})
test_that("new loo_controls are incorporated", {
get_new_method <- function(x) {
attributes(x$mod_stats$wi)$method
}
if (Sys.getenv("NOT_CRAN") == "") {
skip_on_cran()
}
expand_manec(tt1, formulas) |>
get_new_method() |>
expect_null() |>
expect_message() |>
suppressWarnings()
my_ctrls <- list(weights = list(method = "pseudobma"))
expand_manec(tt1, formulas, loo_controls = my_ctrls) |>
get_new_method() |>
expect_equal("pseudobma") |>
expect_message() |>
suppressWarnings()
my_ctrls <- list(weights = list(method = "stacking"))
expand_manec(tt1, formulas, loo_controls = my_ctrls) |>
get_new_method() |>
expect_equal("stacking") |>
expect_message() |>
suppressWarnings()
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.