R/nbinom_HM.R

Defines functions nbinom_HM

Documented in nbinom_HM

nbinom_HM <- function( cover = NULL, r = NULL, p = NULL, plot = FALSE, xlab = "x",
                       ylab = "Probability" ){

  # 'cover' (i) missing (ii) non-numeric (iii) out of the range (0,1)
  if ( is.null(cover) ) {
    stop("'cover' has not been defined")
  } else {
    if ( length(unlist(cover))>1 ) { message("More than one value for 'cover', the first one will only be used")
      if ( !is.numeric(cover[1]) | cover<=0 | cover>=1 ) { stop("Invalid 'cover' value") } else { cover <- cover[1] }
    } else { if ( !is.numeric(cover) | cover<=0 | cover>=1 ) { stop("Invalid 'cover' value") } }
  }

  # Likelihood r input (i) more than one value for parameters (ii) non-numeric input (iii) non-positive
  if ( is.null(r) ) {
    stop("'r' has not been defined")
  } else {
    if ( length(unlist(r))>1 ) { message("More than one value for 'r', the first one will only be used")
      if ( !is.numeric(r) | r<=0 ) { stop("Invalid 'r' value") } else { n <- n[1] }
    } else { if ( !is.numeric(r) | r<=0 ) { stop("Invalid 'r' value") } }
  }

  # Likelihood p input (i) more than one value for parameters (ii) non-numeric input (iii) out of the range (0,1]
  if ( is.null(p) ) {
    stop("'p' has not been defined")
  } else {
    if ( length(unlist(p))>1 ) { message("More than one value for 'p', the first one will only be used")
      if ( !is.numeric(p) | p<=0 | p >1 ) { stop("Invalid 'p' value") } else { p <- p[1] }
    } else { if ( !is.numeric(p) | p >1 ) { stop("Invalid 'p' value") } }
  }

  far <- 1-cover

  ##################################################################
  # Algorithm for the calculation of the HM region, using ordered probabilities

  lb <- max(  floor(  r*(1-p)/p - sqrt( (1/far)* r*(1-p)/(p^2) )  ), 0  )
  ub <- ceiling(  r*(1-p)/p + sqrt( (1/far) * r * (1-p)/(p^2) )  )

  # Locations of ordered probabilities
  Pi <- order( dnbinom( lb:ub, size = r, prob = p ), decreasing = T ) + lb - 1
  nnn <- 1
  sumprob <- 0
  diff <- 1
  E <- c()
  stopp <- 0

  # Loop which ends when the absolute difference with the desired coverage is minimized
  while ( stopp==0 ) {
    sumprob <- sumprob + dnbinom( Pi[nnn], size = r, prob = p )
    if ( abs(sumprob - (1-far)) < diff ) {
      E <- c( E, Pi[nnn] )
      diff <- abs( sumprob - (1-far) )
      nnn <- nnn + 1
    } else { stopp <- 1 }
  }


  # HM region
  ed <- c( min(E), max(E) )

  if ( plot == T) {

    # Graphical parameters for the range and the plotted region
    range <- ed[2] - ed[1]
    xi <- max( 0, floor( ed[1] - 0.15*range ) ):ceiling( ed[2] + 0.15*range )
    pi <- dnbinom( xi, size = r, prob = p )

    # Graphical parameters for the colors
    ind0 <- which( xi<min(ed) | xi > max(ed) )
    cols <- rep( rgb(0, 1, 0, 0.3), times = length(xi) )
    cols[ind0] <- "white"

    # Graphical parameter for the main of the plot
    percov <- round( 100*sum( dnbinom( ed[1]:ed[2], size = r, prob = p ) ), 2 )

    barplot( pi, xlab = xlab, ylab = ylab, main = bquote("Negative Binomial: "~.(percov)*"% HM = ["*.(ed[1])*", "~ .(ed[2])*"]" ), axes = F, names.arg = xi, col = cols )

    axis(2)

  }

  # The data frame of the output
  RES <- data.frame( lower.bound = ed[1], upper.bound = ed[2], coverage = sum( dnbinom( ed[1]:ed[2], size = r, prob = p ) ) )

  return(RES)

}

Try the bayespm package in your browser

Any scripts or data that you put into this service are public.

bayespm documentation built on Sept. 11, 2023, 1:08 a.m.