View source: R/point_estimate.R
point_estimate | R Documentation |
Compute various point-estimates, such as the mean, the median or the MAP, to describe posterior distributions.
point_estimate(x, ...)
## S3 method for class 'numeric'
point_estimate(x, centrality = "all", dispersion = FALSE, threshold = 0.1, ...)
## S3 method for class 'data.frame'
point_estimate(
x,
centrality = "all",
dispersion = FALSE,
threshold = 0.1,
rvar_col = NULL,
...
)
## S3 method for class 'stanreg'
point_estimate(
x,
centrality = "all",
dispersion = FALSE,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),
parameters = NULL,
...
)
## S3 method for class 'brmsfit'
point_estimate(
x,
centrality = "all",
dispersion = FALSE,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
...
)
## S3 method for class 'BFBayesFactor'
point_estimate(x, centrality = "all", dispersion = FALSE, ...)
## S3 method for class 'get_predicted'
point_estimate(
x,
centrality = "all",
dispersion = FALSE,
use_iterations = FALSE,
verbose = TRUE,
...
)
x |
Vector representing a posterior distribution, or a data frame of such
vectors. Can also be a Bayesian model. bayestestR supports a wide range
of models (see, for example, |
... |
Additional arguments to be passed to or from methods. |
centrality |
The point-estimates (centrality indices) to compute. Character
(vector) or list with one or more of these options: |
dispersion |
Logical, if |
threshold |
For |
rvar_col |
A single character - the name of an |
effects |
Should results for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated. |
component |
Should results for all parameters, parameters for the conditional model or the zero-inflated part of the model be returned? May be abbreviated. Only applies to brms-models. |
parameters |
Regular expression pattern that describes the parameters
that should be returned. Meta-parameters (like |
use_iterations |
Logical, if |
verbose |
Toggle off warnings. |
There is also a plot()
-method implemented in the see-package.
Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., and Lüdecke, D. (2019). Indices of Effect Existence and Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3389/fpsyg.2019.02767")}
library(bayestestR)
point_estimate(rnorm(1000))
point_estimate(rnorm(1000), centrality = "all", dispersion = TRUE)
point_estimate(rnorm(1000), centrality = c("median", "MAP"))
df <- data.frame(replicate(4, rnorm(100)))
point_estimate(df, centrality = "all", dispersion = TRUE)
point_estimate(df, centrality = c("median", "MAP"))
# rstanarm models
# -----------------------------------------------
model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
point_estimate(model, centrality = "all", dispersion = TRUE)
point_estimate(model, centrality = c("median", "MAP"))
# emmeans estimates
# -----------------------------------------------
point_estimate(
emmeans::emtrends(model, ~1, "wt", data = mtcars),
centrality = c("median", "MAP")
)
# brms models
# -----------------------------------------------
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
point_estimate(model, centrality = "all", dispersion = TRUE)
point_estimate(model, centrality = c("median", "MAP"))
# BayesFactor objects
# -----------------------------------------------
bf <- BayesFactor::ttestBF(x = rnorm(100, 1, 1))
point_estimate(bf, centrality = "all", dispersion = TRUE)
point_estimate(bf, centrality = c("median", "MAP"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.