Nothing
#************************************************************************
# Boundary Kernel Density class
#************************************************************************
setClass(
Class = "BoundaryKernel",
representation = representation(
mu = "numeric",
"VIRTUAL"),
contains = "KernelDensity"
)
setValidity(
Class = "BoundaryKernel",
method = function(object) {
if (object@mu != 0 & object@mu != 1 & object@mu != 2 & object@mu != 3){
stop("Mu can only take values 0,1,2 or 3")
}else if (object@b < 0 | object@b > 1){
stop("The parameter b must be 0<=b<=1")
}else if (object@b > 0.5){
cat(c("WARNING: b parameter is too large (b =", object@b, "). If b > 0.5 left and right boundary overlap and \n it may result",
"in extrange discontinuities in the density function\n"))
}else{}
return(TRUE)
}
)
setGeneric (
name = "getmu",
def = function(.Object){standardGeneric("getmu")}
)
setMethod(
f = "getmu",
signature = "BoundaryKernel",
definition = function(.Object) {
return(.Object@mu)
}
)
setGeneric (
name = "leftBoundaryKernelFunction",
def = function(.Object,q,u){standardGeneric("leftBoundaryKernelFunction")}
)
setGeneric (
name = "interiorKernelFunction",
def = function(.Object,u){standardGeneric("interiorKernelFunction")}
)
setGeneric (
name = "rightBoundaryKernelFunction",
def = function(.Object,q,u){standardGeneric("rightBoundaryKernelFunction")}
)
setGeneric (
name = "singlePoint.density",
def = function(.Object,x){standardGeneric("singlePoint.density")}
)
setMethod(
f = "singlePoint.density",
signature = "BoundaryKernel",
definition = function(.Object,x){
if(length(x) != 1){
stop("This method can only evaluate the density in a single data point")
}else{}
indices <- abs(.Object@dataPoints - x)/.Object@b <= 1
subsamples <- .Object@dataPoints[indices]
u <- (x-subsamples)/.Object@b # evaluation points where the kernel functions are evaluated
if (x<.Object@b){ # Use left boundary kernel function
q <- x/.Object@b
sum(leftBoundaryKernelFunction(.Object,q,u)) / (.Object@b*length(.Object@dataPoints))
} else if ((x>=.Object@b & x<=(1-.Object@b))){ # Use interior kernel function
sum(interiorKernelFunction(.Object,u)) / (.Object@b*length(.Object@dataPoints))
} else if (x > (1-.Object@b)){ # Use right boundary kernel function
q <- (1-x)/.Object@b
sum(rightBoundaryKernelFunction(.Object,q,u)) / (.Object@b*length(.Object@dataPoints))
} else {}
})
setMethod(
f = "density",
signature = "BoundaryKernel",
definition = function(x,values,scaled = FALSE) {
.Object <- x
x <- values
isMatrix.x <- is.matrix(x)
#dims = [nrows,ncols]
dims <- dim(x)
if(!scaled){
# scale the data to the 0-1 interval
x <- getScaledPoints(.Object,x)
}
# if any value in x is lower than 0 or grater than 1 its density is 0
numDataPoints <- length(x)
index.nozero <- which(x>=0 & x <=1)
x <- x[index.nozero]
if(length(x) == 0){ # all elements in x were out of bound
return(rep(0,numDataPoints - length(index.nozero)))
}
# x is considered as a vector even if it is a matrix(elements taken by columns)
x.indices <- rep(0,times = length(x))
x.densities <- numeric(0)
if(length(.Object@densityCache) == length(.Object@dataPointsCache)){
# if there are density values calculated in the cache, first we look
# at the cache to check whether some of the values in x have been already calculated
x.indices <- match(x, .Object@dataPointsCache, nomatch=0)
if(any(x.indices > 0)){
# the density of some of the points are already calculated in the cache
x.densities[x.indices != 0] <- .Object@densityCache[x.indices[x.indices!=0]]
}else{}
}else{}
# the data poins whose densities are not calculated in the cache
x.new <- x[x.indices == 0]
x.new.length <- length(x.new)
if(x.new.length > 0){
# There are densities to be calculated
densities <- sapply(x.new, FUN = function(x,.Object){
singlePoint.density(.Object,x)}, .Object= .Object)
x.densities[x.indices == 0] <- densities
}else{}
# include the density (density=0) of the out-of-bound x points in the final result
aux.density <- numeric(numDataPoints)
aux.density[index.nozero] <- x.densities
x.densities <- aux.density
#if x is a matrix, we storte the densities as a matrix object
if(isMatrix.x){
dim(x.densities) <- dims
}else{}
#if data are in another scale (not in the [0,1] interval) we should
# normalize the density by dividing it by the length
# of the interval so that the density integrates to 1
domain.length <- .Object@upper.limit - .Object@lower.limit
if(!scaled){
x.densities <- x.densities/domain.length
}
return(x.densities)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.