Nothing
#' Generate the Sampling Distribution of Regression Parameters
#' Using the Monte Carlo Method
#'
#' @details Let the parameter vector
#' of the unstandardized regression model be given by
#' \deqn{
#' \boldsymbol{\theta}
#' =
#' \left\{
#' \mathbf{b},
#' \sigma^{2},
#' \mathrm{vech}
#' \left(
#' \boldsymbol{\Sigma}_{\mathbf{X}\mathbf{X}}
#' \right)
#' \right\}
#' }
#' where \eqn{\mathbf{b}} is the vector of regression slopes,
#' \eqn{\sigma^{2}} is the error variance,
#' and
#' \eqn{
#' \mathrm{vech}
#' \left(
#' \boldsymbol{\Sigma}_{\mathbf{X}\mathbf{X}}
#' \right)
#' }
#' is the vector of unique elements
#' of the covariance matrix of the regressor variables.
#' The empirical sampling distribution
#' of \eqn{\boldsymbol{\theta}}
#' is generated using the Monte Carlo method,
#' that is, random values of parameter estimates
#' are sampled from the multivariate normal distribution
#' using the estimated parameter vector as the mean vector
#' and the specified sampling covariance matrix using the `type` argument
#' as the covariance matrix.
#' A replacement sampling approach is implemented
#' to ensure that the model-implied covariance matrix
#' is positive definite.
#'
#' @author Ivan Jacob Agaloos Pesigan
#'
#' @return Returns an object
#' of class `mc` which is a list with the following elements:
#' \describe{
#' \item{call}{Function call.}
#' \item{args}{Function arguments.}
#' \item{lm_process}{Processed `lm` object.}
#' \item{scale}{Sampling variance-covariance matrix of parameter estimates.}
#' \item{location}{Parameter estimates.}
#' \item{thetahatstar}{Sampling distribution of parameter estimates.}
#' \item{fun}{Function used ("MC").}
#' }
#'
#' @param object Object of class `lm`.
#' @param R Positive integer.
#' Number of Monte Carlo replications.
#' @param type Character string.
#' Sampling covariance matrix type.
#' Possible values are
#' `"mvn"`,
#' `"adf"`,
#' `"hc0"`,
#' `"hc1"`,
#' `"hc2"`,
#' `"hc3"`,
#' `"hc4"`,
#' `"hc4m"`, and
#' `"hc5"`.
#' `type = "mvn"` uses the normal-theory sampling covariance matrix.
#' `type = "adf"` uses the asymptotic distribution-free
#' sampling covariance matrix.
#' `type = "hc0"` through `"hc5"` uses different versions of
#' heteroskedasticity-consistent sampling covariance matrix.
#' @param g1 Numeric.
#' `g1` value for `type = "hc4m"`.
#' @param g2 Numeric.
#' `g2` value for `type = "hc4m"`.
#' @param k Numeric.
#' Constant for `type = "hc5"`
#' @param decomposition Character string.
#' Matrix decomposition of the sampling variance-covariance matrix
#' for the data generation.
#' If `decomposition = "chol"`, use Cholesky decomposition.
#' If `decomposition = "eigen"`, use eigenvalue decomposition.
#' If `decomposition = "svd"`, use singular value decomposition.
#' @param pd Logical.
#' If `pd = TRUE`,
#' check if the sampling variance-covariance matrix
#' is positive definite using `tol`.
#' @param tol Numeric.
#' Tolerance used for `pd`.
#' @param fixed_x Logical.
#' If `fixed_x = TRUE`, treat the regressors as fixed.
#' If `fixed_x = FALSE`, treat the regressors as random.
#' @param seed Integer.
#' Seed number for reproducibility.
#'
#' @references
#' Dudgeon, P. (2017).
#' Some improvements in confidence intervals
#' for standardized regression coefficients.
#' *Psychometrika*, *82*(4), 928–951.
#' \doi{10.1007/s11336-017-9563-z}
#'
#' MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004).
#' Confidence limits for the indirect effect:
#' Distribution of the product and resampling methods.
#' *Multivariate Behavioral Research*, *39*(1), 99-128.
#' \doi{10.1207/s15327906mbr3901_4}
#'
#' Pesigan, I. J. A., & Cheung, S. F. (2023).
#' Monte Carlo confidence intervals for the indirect effect with missing data.
#' *Behavior Research Methods*.
#' \doi{10.3758/s13428-023-02114-4}
#'
#' Preacher, K. J., & Selig, J. P. (2012).
#' Advantages of Monte Carlo confidence intervals for indirect effects.
#' *Communication Methods and Measures*, *6*(2), 77–98.
#' \doi{10.1080/19312458.2012.679848}
#'
#' @examples
#' # Data ---------------------------------------------------------------------
#' data("nas1982", package = "betaMC")
#'
#' # Fit Model in lm ----------------------------------------------------------
#' object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
#'
#' # MC -----------------------------------------------------------------------
#' mc <- MC(
#' object,
#' R = 100, # use a large value e.g., 20000L for actual research
#' seed = 0508
#' )
#' mc
#' # The `mc` object can be passed as the first argument
#' # to the following functions
#' # - BetaMC
#' # - DeltaRSqMC
#' # - DiffBetaMC
#' # - PCorMC
#' # - RSqMC
#' # - SCorMC
#'
#' @family Beta Monte Carlo Functions
#' @keywords betaMC mc
#' @export
MC <- function(object,
R = 20000L,
type = "hc3",
g1 = 1,
g2 = 1.5,
k = 0.7,
decomposition = "eigen",
pd = TRUE,
tol = 1e-06,
fixed_x = FALSE,
seed = NULL) {
lm_process <- .ProcessLM(object)
stopifnot(
type %in% c(
"adf",
"hc0",
"hc1",
"hc2",
"hc3",
"hc4",
"hc4m",
"hc5",
"mvn"
)
)
stopifnot(0 < k & k < 1)
scale <- .Cov(
lm_process = lm_process,
type = type,
g1 = g1,
g2 = g2,
k = k,
jcap = .J(
lm_process = lm_process,
rsq = NULL,
fixed_x = fixed_x
)
)
location <- lm_process$theta
theta <- location
vechsigmacapx <- lm_process$theta[
(lm_process$k + 1):lm_process$q
]
if (fixed_x) {
location <- location[seq_len(lm_process$k)]
}
out <- list(
call = match.call(),
args = list(
object = object,
R = R,
type = type,
g1 = g1,
g2 = g2,
k = k,
decomposition = decomposition,
pd = pd,
tol = tol,
fixed_x = fixed_x,
seed = seed
),
lm_process = lm_process,
scale = scale,
location = location,
theta = theta,
thetahatstar = .MC(
scale = scale,
location = location,
p = lm_process$p,
k = lm_process$k,
q = lm_process$q,
fixed_x = fixed_x,
vechsigmacapx = vechsigmacapx,
R = R,
decomposition = decomposition,
pd = pd,
tol = tol,
seed = seed
),
fun = "MC"
)
class(out) <- c(
"mc",
class(out)
)
return(
out
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.