Nothing
#' Estimate Semipartial Correlation Coefficients
#' and Generate the Corresponding Sampling Distribution
#' Using Nonparametric Bootstrapping
#'
#' @author Ivan Jacob Agaloos Pesigan
#'
#' @details The vector of semipartial correlation coefficients
#' (\eqn{r_{s}})
#' is estimated from bootstrap samples.
#' Confidence intervals are generated by obtaining
#' percentiles corresponding to \eqn{100(1 - \alpha)\%}
#' from the generated sampling
#' distribution of \eqn{r_{s}},
#' where \eqn{\alpha} is the significance level.
#'
#' @return Returns an object
#' of class `betanb` which is a list with the following elements:
#' \describe{
#' \item{call}{Function call.}
#' \item{args}{Function arguments.}
#' \item{thetahatstar}{Sampling distribution of
#' \eqn{r_{s}}.}
#' \item{vcov}{Sampling variance-covariance matrix of
#' \eqn{r_{s}}.}
#' \item{est}{Vector of estimated
#' \eqn{r_{s}}.}
#' \item{fun}{Function used ("SCorNB").}
#' }
#'
#' @inheritParams BetaNB
#'
#' @examples
#' # Data ---------------------------------------------------------------------
#' data("nas1982", package = "betaNB")
#'
#' # Fit Model in lm ----------------------------------------------------------
#' object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
#'
#' # NB -----------------------------------------------------------------------
#' nb <- NB(
#' object,
#' R = 100, # use a large value e.g., 5000L for actual research
#' seed = 0508
#' )
#'
#' # SCorNB -------------------------------------------------------------------
#' out <- SCorNB(nb, alpha = 0.05)
#'
#' ## Methods -----------------------------------------------------------------
#' print(out)
#' summary(out)
#' coef(out)
#' vcov(out)
#' confint(out, level = 0.95)
#'
#' @family Beta Nonparametric Bootstrap Functions
#' @keywords betaNB scor
#' @export
SCorNB <- function(object,
alpha = c(0.05, 0.01, 0.001)) {
stopifnot(
inherits(
x = object,
what = "nb"
)
)
if (object$lm_process$p < 2) {
stop("Two or more regressors is required.")
}
fun <- "SCorNB"
est <- .SPCor(
betastar = object$lm_process$betastar,
sigmacapx = object$lm_process$sigmacapx
)
names(est) <- object$lm_process$xnames
foo <- function(x) {
return(
.SPCor(
betastar = .BetaStarofSigma(
sigmacap = x,
q = 1 / sqrt(diag(x)),
k = object$lm_process$k
),
sigmacapx = x[
2:object$lm_process$k,
2:object$lm_process$k,
drop = FALSE
]
)
)
}
thetahatstar <- lapply(
X = object$thetahatstar,
FUN = foo
)
vcov <- stats::var(
do.call(
what = "rbind",
args = thetahatstar
)
)
colnames(vcov) <- rownames(vcov) <- names(est)
out <- list(
call = match.call(),
args = list(
object = object,
alpha = alpha
),
thetahatstar = thetahatstar,
jackknife = lapply(
X = object$jackknife,
FUN = foo
),
vcov = vcov,
est = est,
fun = fun
)
class(out) <- c(
"betanb",
class(out)
)
return(
out
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.