Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(bfboin)
## -----------------------------------------------------------------------------
sim_scenario <- data.frame(Scenario = rep(1:12, each = 5),
Dose_level = paste0("Dose ", rep(1:5, 12)),
DLT = c(0.25, 0.41, 0.45, 0.49, 0.53,
0.12, 0.25, 0.42, 0.49, 0.55,
0.04, 0.12, 0.25, 0.43, 0.63,
0.02, 0.06, 0.1, 0.25, 0.4,
0.02, 0.05, 0.08, 0.11, 0.25,
0.12, 0.25, 0.42, 0.49, 0.55,
0.04, 0.12, 0.25, 0.43, 0.63,
0.02, 0.06, 0.1, 0.25, 0.4,
0.02, 0.05, 0.08, 0.11, 0.25,
0.04, 0.12, 0.25, 0.43, 0.63,
0.02, 0.06, 0.1, 0.25, 0.4,
0.02, 0.05, 0.08, 0.11, 0.25),
Response = c(0.3, 0.4, 0.45, 0.5, 0.55,
0.2, 0.3, 0.4, 0.5, 0.6,
0.1, 0.2, 0.3, 0.45, 0.58,
0.05, 0.1, 0.15, 0.3, 0.45,
0.05, 0.1, 0.15, 0.2, 0.3,
0.3, 0.35, 0.36, 0.36, 0.36,
0.15, 0.3, 0.35, 0.36, 0.36,
0.10, 0.2, 0.3, 0.35, 0.35,
0.10, 0.15, 0.2, 0.3, 0.35,
0.3, 0.32, 0.35, 0.36, 0.36,
0.1, 0.3, 0.32, 0.35, 0.36,
0.1, 0.15, 0.3, 0.32, 0.35))
tab_scenario <- sim_scenario |>
tidyr::pivot_longer(cols = c("DLT", "Response"),
names_to = "Rate",
values_to = "value") |>
tidyr::pivot_wider(names_from = Dose_level,
values_from = "value")
knitr::kable(tab_scenario, row.names = NA)
## -----------------------------------------------------------------------------
generate_oc <- function(x, DLT_target = 0.25) {
rate_dlt <- dplyr::filter(sim_scenario, Scenario == x)$DLT
rate_response <- dplyr::filter(sim_scenario, Scenario == x)$Response
temp <- get.oc.bf(ntrial = 1000,
seed = 1000,
target = DLT_target,
p.true = rate_dlt,
ncohort = 10,
cohortsize = 3,
n.earlystop = 9,
startdose = 1,
titration = FALSE,
p.saf = 0.6 * DLT_target,
p.tox = 1.4 * DLT_target,
cutoff.eli = 0.95,
extrasafe = FALSE,
offset = 0.05,
boundMTD=FALSE,
n.cap = 12,
end.backfill = TRUE,
n.per.month = 3,
dlt.window = 1,
p.response.true = rate_response,
three.plus.three = FALSE,
accrual = "uniform")
out <- data.frame(Dose_level = paste0("Dose ", 1:5),
Toxicity_rate = rate_dlt,
Response_rate = rate_response,
percent_selection = temp$selpercent,
n_patients = temp$npatients,
percent_patients = temp$percentpatients,
n_toxicity = temp$ntox,
n_total = temp$totaln,
percent_stop = temp$percentstop,
duration = temp$duration,
scenario = x)
return(out)
}
out_sim <- purrr::map_dfr(1:2, generate_oc)
head(out_sim)
## -----------------------------------------------------------------------------
out_OC <- out_sim |>
dplyr::group_by(scenario, n_total, duration) |>
dplyr::summarise(`Correct selection (%)` = round(sum(percent_selection[Toxicity_rate == 0.25]), 1),
`Over-dosing selection (%)` = round(sum(percent_selection[Toxicity_rate > 0.25]), 1),
`Patients below MTD, n` = sum(n_patients[Toxicity_rate < 0.25]),
`Patients below MTD, %` = sum(percent_patients[Toxicity_rate < 0.25]),
`Patients at MTD, n` = sum(n_patients[Toxicity_rate == 0.25]),
`Patients at MTD, %` = sum(percent_patients[Toxicity_rate == 0.25]),
`Patients over-dosed, n` = sum(n_patients[Toxicity_rate > 0.25]),
`Patients over-dosed, %` = sum(percent_patients[Toxicity_rate > 0.25])) |>
dplyr::mutate(`Patients below MTD, n (%)` = paste0(round(`Patients below MTD, n`, 1),
" (", round(`Patients below MTD, %`, 1), ")"),
`Patients at MTD, n (%)` = paste0(round(`Patients at MTD, n`, 1),
" (", round(`Patients at MTD, %`, 1), ")"),
`Patients over-dosed, n (%)` = paste0(round(`Patients over-dosed, n`, 1),
" (", round(`Patients over-dosed, %`, 1), ")"),
`Average sample size (n)` = round(n_total, 1),
`Average duration (months)` = round(duration, 1)) |>
dplyr::ungroup() |>
dplyr::select(scenario, `Correct selection (%)`, `Over-dosing selection (%)`,
`Patients below MTD, n (%)`, `Patients at MTD, n (%)`,
`Patients over-dosed, n (%)`, `Average sample size (n)`,
`Average duration (months)`)
knitr::kable(out_OC)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.