R/Inf.Dorf.calc1.R

Defines functions Inf.Dorf.calc1

# Start  Inf.Dorf.calc1() function
###############################################################################
# Brianna Hitt - 12-06-19
# This function is the same as Inf.Dorf.OTC1(), but no longer finds the 
#   optimal testing configuration. It only calculates operating
#   characteristics for a specific testing configuration.

Inf.Dorf.calc1 <- function(p, Se, Sp, group.sz, pool.szs, 
                           alpha = 2, a, trace = TRUE, print.time = TRUE, ...){
  
  start.time <- proc.time()
  
  N <- group.sz
  
  # build a vector of probabilities for a heterogeneous population
  if (length(p) == 1) {
    p.vec <- expectOrderBeta(p = p, alpha = alpha, size = N, ...)
  } else if (length(p) > 1) {
    p.vec <- sort(p)
    alpha <- NA
  }
  
  # calculate descriptive measures for informative Dorfman testing, 
  #   given a configuration/set of pool sizes
  save.info <- inf.dorf.measures(prob = p.vec, se = Se, sp = Sp, N = N, 
                                 pool.sizes = pool.szs)
  
  # extract accuracy measures for each individual
  ET <- save.info$e
  all.ind.testerror <- save.info$summary[,-1]
  ind.testerror <- get.unique.index(all.ind.testerror[a, ], 
                                    which(colnames(all.ind.testerror) == "PSp"), 
                                    rowlabel = a)[,-1]
  colnames(ind.testerror) <- c("PSe", "PSP", "PPPV", "PNPV", "individuals")
  PSe.vec <- save.info$summary[,3]
  PSp.vec <- save.info$summary[,4]
  
  # calculate overall accuracy measures
  PSe <- sum(p.vec * PSe.vec) / sum(p.vec)
  PSp <- sum((1 - p.vec) * (PSp.vec)) / sum(1 - p.vec)
  PPPV <- sum(p.vec * PSe.vec) / sum(p.vec * PSe.vec + 
                                       (1 - p.vec) * (1 - PSp.vec))
  PNPV <- sum((1 - p.vec) * PSp.vec) / sum((1 - p.vec) * PSp.vec + 
                                             p.vec * (1 - PSe.vec))
  
  save.it <- c(alpha, N, ET, ET / N, PSe, PSp, PPPV, PNPV)
  
  # put accuracy measures in a matrix for easier display of results
  acc.ET <- matrix(data = save.it[5:8], nrow = 1, ncol = 4, 
                   dimnames = list(NULL, c("PSe", "PSp", "PPPV", "PNPV")))
  
  # create input accuracy value matrices for output display
  Se.display <- matrix(data = Se, nrow = 1, ncol = 2, 
                       dimnames = list(NULL, "Stage" = 1:2))
  Sp.display <- matrix(data = Sp, nrow = 1, ncol = 2, 
                       dimnames = list(NULL, "Stage" = 1:2))
  
  # print time elapsed, if print.time == TRUE
  if (print.time) {
    time.it(start.time)
  }
  
  list("algorithm" = "Informative two-stage hierarchical testing",
       "prob" = list(p), "alpha" = alpha,
       "Se" = Se.display, "Sp" = Sp.display,
       "Config" = list("Block.sz" = save.it[2], "pool.szs" = pool.szs), 
       "p.vec" = p.vec, "ET" = save.it[3], "value" = save.it[4], 
       "Accuracy" = list("Individual" = ind.testerror, "Overall" = acc.ET))
}

###############################################################################

Try the binGroup2 package in your browser

Any scripts or data that you put into this service are public.

binGroup2 documentation built on Nov. 14, 2023, 9:06 a.m.