Nothing
########################
#### MLE of a bivariate poisson distribution
#### 3/2015
#### mtsagris@yahoo.gr
#### References: Kazutomo Kawamura (1984)
#### Direct calculation of maximum likelihood
#### estimator for the bivariate poisson distribution
#### Kodai mathematical journal
################################
bp.mle2 <- function(x1, x2 = NULL) {
if ( is.null(x2) ) {
x2 <- x1[, 2]
x1 <- x1[, 1]
}
x1 <- as.numeric(x1) ; x2 <- as.numeric(x2)
## x1 and x2 are the two variables
n <- length(x1) ## sample size
sx1 <- sum(x1) ; sx2 <- sum(x2)
m1 <- sx1 / n ; m2 <- sx2 / n
## m1 and m2 estimates of lambda1* and lambda2* respectively
## funa is the function to be maximised over lambda3
ind <- Rfast::rowMins( cbind(x1, x2), value = TRUE )
max1 <- max(x1) ; max2 <- max(x2)
mm <- max( max1, max2 ) ; mn <- min(max1, max2)
omn <- 0:mn
fac <- factorial( omn )
#ch <- matrix(numeric( (mm + 1)^2 ), nrow = mm + 1, ncol = mm + 1 )
#for ( i in 1:c(mm + 1) ) {
# for ( j in c(i - 1):c(mm + 1) ) {
# ch[i, j] <- choose(j, i - 1)
# }
#}
i <- j <- 1:c(mm + 1)
ch <- choose( Rfast::rep_row(j, mm + 1), i - 1 )
rownames(ch) <- colnames(ch) <- 0:mm
sly1 <- sum( lgamma(x1 + 1) )
sly2 <- sum( lgamma(x2 + 1) )
f2a <- list()
for (j in 1:n) {
a <- 1:c(ind[j] + 1)
f2a[[ j ]] <- ch[ a, x1[j] ] * ch[ a, x2[j] ] * fac[ a ]
}
funa <- function(l3, f2a, n) {
f2 <- numeric(n)
con <- - m1 - m2 + l3
expo <- ( l3/( (m1 - l3) * (m2 - l3) ) )^omn
l1 <- log(m1 - l3)
l2 <- log(m2 - l3)
f1 <- sx1 * l1 - sly1 + sx2 * l2 - sly2
for (j in 1:n) {
f2[j] <- log( sum( f2a[[ j ]] * expo[ 1:c(ind[j] + 1) ] ) )
}
n * con + f1 + sum( f2[abs(f2) < Inf] )
}
bar <- optimize( funa, c(0, min(m1, m2) - 0.05), f2a = f2a, n = n, tol = 1e-5, maximum = TRUE)
l3 <- bar$maximum ## maximum of the log-likelihood
lambda <- c(m1 - l3, m2 - l3, l3)
names(lambda) <- c('lambda1', 'lambda2', 'lambda3')
list(lambda = lambda, loglik = bar$objective)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.