Nothing
#### repackaged functions from bkmr package ####
# todo:
# may also want parallel implementations of:
# CalcWithinGroupPIPs
OverallRiskSummaries_parallel <- function(x, ...){
#' Overall summary by chain
#' @param x bkmrfit.list object from \code{\link[bkmrhat]{kmbayes_parallel}}
#' @param ... arguments to \code{\link[bkmr]{OverallRiskSummaries}}
#'
#' @return data.frame with all chains together
#' @importFrom bkmr OverallRiskSummaries
#' @importFrom future value
#' @importFrom stats runif
#' @export
#'
ff <- list()
nchains = length(x)
ss = round(runif(nchains) * .Machine$integer.max)
for (ii in 1:nchains) {
xii = x[[ii]]
ff[[ii]] <- future({
cat(paste("Chain", ii, "\n"))
df = suppressWarnings(bkmr::OverallRiskSummaries(xii, ...))
df$chain=ii
df
}, seed=ss[ii])
}
res <- value(ff)
as.data.frame(do.call("rbind", res))
}
PredictorResponseUnivar_parallel <- function(x, ...){
#' Univariate predictor response summary by chain
#' @param x bkmrfit.list object from \code{\link[bkmrhat]{kmbayes_parallel}}
#' @param ... arguments to \code{\link[bkmr]{PredictorResponseUnivar}}
#'
#' @return data.frame with all chains together
#' @importFrom bkmr PredictorResponseUnivar
#' @importFrom stats runif
#' @importFrom future value
#' @export
#'
ff <- list()
nchains = length(x)
ss = round(runif(nchains) * .Machine$integer.max)
for (ii in 1:nchains) {
xii = x[[ii]]
ff[[ii]] <- future({
cat(paste("Chain", ii, "\n"))
df = suppressWarnings(bkmr::PredictorResponseUnivar(xii, ...))
df$chain=ii
df
}, seed=ss[ii])
}
res <- value(ff)
as.data.frame(do.call("rbind", res))
}
PredictorResponseBivar_parallel <- function(x, ...){
#' Bivariate predictor response by chain
#' @param x bkmrfit.list object from \code{\link[bkmrhat]{kmbayes_parallel}}
#' @param ... arguments to \code{\link[bkmr]{PredictorResponseBivar}}
#'
#' @return data.frame with all chains together
#' @importFrom bkmr PredictorResponseBivar
#' @importFrom stats runif
#' @importFrom future value
#' @export
#'
ff <- list()
nchains = length(x)
ss = round(runif(nchains) * .Machine$integer.max)
for (ii in 1:nchains) {
xii = x[[ii]]
ff[[ii]] <- future({
cat(paste("Chain", ii, "\n"))
df = suppressWarnings(bkmr::PredictorResponseBivar(xii, ...))
df$chain=ii
df
}, seed=ss[ii])
}
res <- value(ff)
as.data.frame(do.call("rbind", res))
}
SingVarRiskSummaries_parallel <- function(x, ...){
#' Single variable summary by chain
#' @param x bkmrfit.list object from \code{\link[bkmrhat]{kmbayes_parallel}}
#' @param ... arguments to \code{\link[bkmr]{SingVarRiskSummaries}}
#'
#' @return data.frame with all chains together
#' @importFrom bkmr SingVarRiskSummaries
#' @importFrom future value
#' @importFrom stats runif
#' @export
#'
ff <- list()
nchains = length(x)
ss = round(runif(nchains) * .Machine$integer.max)
for (ii in 1:nchains) {
xii = x[[ii]]
ff[[ii]] <- future({
cat(paste("Chain", ii, "\n"))
df = suppressWarnings(bkmr::SingVarRiskSummaries(xii, ...))
df$chain=ii
df
}, seed=ss[ii])
}
res <- value(ff)
as.data.frame(do.call("rbind", res))
}
#ExtractSamps_parallel <- function(x, ...){
# #' Extract posterior samples by chain
# #' @param x bkmrfit.list object from \code{\link[bkmrhat]{kmbayes_parallel}}
# #' @param ... arguments to \code{\link[bkmr]{ExtractSamps}}
# #'
# #' @return data.frame with all chains together
# #' @importFrom bkmr ExtractSamps
# #' @export
# #'
# ff <- list()
# nchains = length(x)
# for (ii in 1:nchains) {
# xii = x[[ii]]
# ff[[ii]] <- future({
# cat(paste("Chain", ii, "\n"))
# df = suppressWarnings(bkmr::ExtractSamps(xii, ...))
# df$chain=ii
# df
# }, seed=TRUE)
# }
# res <- value(ff)
# as.data.frame(do.call("rbind", res))
#}
ExtractPIPs_parallel <- function(x, ...){
#' Posterior inclusion probabilities by chain
#' @param x bkmrfit.list object from \code{\link[bkmrhat]{kmbayes_parallel}}
#' @param ... arguments to \code{\link[bkmr]{ExtractPIPs}}
#'
#' @return data.frame with all chains together
#' @importFrom bkmr ExtractPIPs
#' @importFrom future value
#' @importFrom stats runif
#' @export
#'
ff <- list()
nchains = length(x)
ss = round(runif(nchains) * .Machine$integer.max)
for (ii in 1:nchains) {
xii = x[[ii]]
ff[[ii]] <- future({
cat(paste("Chain", ii, "\n"))
df = suppressWarnings(data.frame(bkmr::ExtractPIPs(xii, ...)))
df$chain=ii
df
}, seed=ss[ii])
}
res <- value(ff)
as.data.frame(do.call("rbind", res))
}
SamplePred_parallel <- function(x, ...){
#' Posterior samples of E(Y|h(Z),X,beta) by chain
#' @param x bkmrfit.list object from \code{\link[bkmrhat]{kmbayes_parallel}}
#' @param ... arguments to \code{\link[bkmr]{SamplePred}}
#'
#' @return data.frame with all chains together
#' @importFrom bkmr SamplePred
#' @importFrom future value
#' @importFrom stats runif
#' @export
#'
ff <- list()
nchains = length(x)
ss = round(runif(nchains) * .Machine$integer.max)
for (ii in 1:nchains) {
xii = x[[ii]]
ff[[ii]] <- future({
cat(paste("Chain", ii, "\n"))
df = suppressWarnings(as.data.frame(bkmr::SamplePred(xii, ...)))
df$chain=ii
df
}, seed=ss[ii])
}
res <- value(ff)
as.data.frame(do.call("rbind", res))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.