blockcluster: Coclustering Package for Binary, Categorical, Contingency and Continuous Data-Sets

Share:

Simultaneous clustering of rows and columns, usually designated by biclustering, co-clustering or block clustering, is an important technique in two way data analysis. It consists of estimating a mixture model which takes into account the block clustering problem on both the individual and variables sets. The blockcluster package provides a bridge between the C++ core library and the R statistical computing environment. This package allows to co-cluster binary, contingency, continuous and categorical data-sets. It also provides utility functions to visualize the results. This package may be useful for various applications in fields of Data mining, Information retrieval, Biology, computer vision and many more. More information about the project and comprehensive tutorial can be found on the link mentioned in URL.

Author
Serge Iovleff [aut, cre], Parmeet Singh Bhatia [aut], Josselin Demont [ctb], Gerard Goavert [ctb], Vincent Brault [ctb], Christophe Biernacki [ctb], Gilles Celeux [ctb]
Date of publication
2016-11-30 14:55:16
Maintainer
Serge Iovleff <Serge.Iovleff@stkpp.org>
License
GPL (>= 3)
Version
4.2.1
URLs

View on CRAN

Man pages

binarydata
Simulated Binary Data-set
BinaryOptions-class
Binary input/output options
blockcluster
Co-Clustering Package
categoricaldata
Simulated categorical Data-set
CategoricalOptions-class
Categorical input/output options
cocluster
Co-Clustering function.
coclusterBinary
Co-Clustering function for Binary data.
coclusterCategorical
Co-Clustering function for categorical data-sets.
coclusterContingency
Co-Clustering function.
coclusterContinuous
Co-Clustering function.
coclusterStrategy
Strategy function
CommonOptions-class
Common Input/Output options.
contingencydatalist
Simulated Contingency Data-set
contingencydataunknown
Simulated Contingency Data-set
ContingencyOptions-class
Contingency input/output options
ContinuousOptions-class
Continuous input/output options
gaussiandata
Simulated Gaussian Data-set
getter-methods
Getter method for Rcoclust output
plot-methods
Plot function.
summary-methods
Summary function.
XEMStrategy
An EM strategy to obtain a good optimum.

Files in this package

blockcluster
blockcluster/inst
blockcluster/inst/doc
blockcluster/inst/doc/blockcluster_tutorial.Rnw
blockcluster/inst/doc/blockcluster_tutorial.pdf
blockcluster/inst/doc/blockcluster_tutorial.R
blockcluster/tests
blockcluster/tests/Contingency
blockcluster/tests/Contingency/contingency.R
blockcluster/tests/Categorical
blockcluster/tests/Categorical/categorical.R
blockcluster/tests/Continuous
blockcluster/tests/Continuous/continuous.R
blockcluster/tests/maketest.sh
blockcluster/tests/Binary
blockcluster/tests/Binary/binary.R
blockcluster/src
blockcluster/src/IDataExchange.h
blockcluster/src/Makevars
blockcluster/src/conversion.h
blockcluster/src/coclust
blockcluster/src/coclust/get_symbolic_link_without_trunk.sh
blockcluster/src/coclust/src
blockcluster/src/coclust/src/typedefs
blockcluster/src/coclust/src/typedefs/typedef.h
blockcluster/src/coclust/src/Algorithms
blockcluster/src/coclust/src/Algorithms/SEMAlgo.h
blockcluster/src/coclust/src/Algorithms/CEMAlgo.cpp
blockcluster/src/coclust/src/Algorithms/GibbsAlgo.cpp
blockcluster/src/coclust/src/Algorithms/IAlgo.h
blockcluster/src/coclust/src/Algorithms/EMAlgo.cpp
blockcluster/src/coclust/src/Algorithms/SEMAlgo.cpp
blockcluster/src/coclust/src/Algorithms/EMAlgo.h
blockcluster/src/coclust/src/Algorithms/GibbsAlgo.h
blockcluster/src/coclust/src/Algorithms/CEMAlgo.h
blockcluster/src/coclust/src/CoClustFacade
blockcluster/src/coclust/src/CoClustFacade/CoCluster.cpp
blockcluster/src/coclust/src/CoClustFacade/CoCluster.h
blockcluster/src/coclust/src/enumerations
blockcluster/src/coclust/src/enumerations/enumerations.h
blockcluster/src/coclust/src/Strategy
blockcluster/src/coclust/src/Strategy/XStrategyforSEMAlgo.h
blockcluster/src/coclust/src/Strategy/XStrategyforSEMAlgo.cpp
blockcluster/src/coclust/src/Strategy/XStrategyAlgo.cpp
blockcluster/src/coclust/src/Strategy/XStrategyAlgo.h
blockcluster/src/coclust/src/Strategy/IStrategy.h
blockcluster/src/coclust/src/Initialization
blockcluster/src/coclust/src/Initialization/CEMInit.h
blockcluster/src/coclust/src/Initialization/RandomInit.h
blockcluster/src/coclust/src/Initialization/EMInit.h
blockcluster/src/coclust/src/Initialization/IInit.h
blockcluster/src/coclust/src/InputParameters
blockcluster/src/coclust/src/InputParameters/InputParameters.h
blockcluster/src/coclust/src/InputParameters/InputParameters.cpp
blockcluster/src/coclust/src/Models
blockcluster/src/coclust/src/Models/ContingencyLBModel_mu_i_nu_j.h
blockcluster/src/coclust/src/Models/BinaryLBModel.cpp
blockcluster/src/coclust/src/Models/ContingencyLBModel_mu_i_nu_j.cpp
blockcluster/src/coclust/src/Models/ContinuousLBModelequalsigma.cpp
blockcluster/src/coclust/src/Models/BinaryLBModelequalepsilon.cpp
blockcluster/src/coclust/src/Models/ContingencyLBModel.h
blockcluster/src/coclust/src/Models/ContinuousLBModel.cpp
blockcluster/src/coclust/src/Models/ICoClustModel.cpp
blockcluster/src/coclust/src/Models/BinaryLBModel.h
blockcluster/src/coclust/src/Models/BinaryLBModelequalepsilon.h
blockcluster/src/coclust/src/Models/CategoricalLBModel.cpp
blockcluster/src/coclust/src/Models/ICoClustModel.h
blockcluster/src/coclust/src/Models/ContinuousLBModel.h
blockcluster/src/coclust/src/Models/ContingencyLBModel.cpp
blockcluster/src/coclust/src/Models/ContinuousLBModelequalsigma.h
blockcluster/src/coclust/src/Models/CategoricalLBModel.h
blockcluster/src/coclust/makefile
blockcluster/src/coclust/get_symbolic_link.sh
blockcluster/src/CategoricalDataExchange.cpp
blockcluster/src/ContingencyDataExchange.cpp
blockcluster/src/IDataExchange.cpp
blockcluster/src/BinaryDataExchange.cpp
blockcluster/src/Rcoclustmain.cpp
blockcluster/src/ContinuousDataExchange.cpp
blockcluster/src/CategoricalDataExchange.h
blockcluster/src/test
blockcluster/src/test/test.cpp
blockcluster/src/BinaryDataExchange.h
blockcluster/src/Makevars.win
blockcluster/src/ContinuousDataExchange.h
blockcluster/src/ContingencyDataExchange.h
blockcluster/NAMESPACE
blockcluster/data
blockcluster/data/contingencydatalist.rda
blockcluster/data/contingencydataunknown.rda
blockcluster/data/categoricaldata.rda
blockcluster/data/gaussiandata.rda
blockcluster/data/binarydata.rda
blockcluster/R
blockcluster/R/optionclasses.R
blockcluster/R/coclusterCategorical.R
blockcluster/R/coclusterBinary.R
blockcluster/R/cocluster.R
blockcluster/R/coclusterStrategy.R
blockcluster/R/RCocluster.R
blockcluster/R/onattach.R
blockcluster/R/coclusterContingency.R
blockcluster/R/coclusterContinuous.R
blockcluster/vignettes
blockcluster/vignettes/blockcluster_tutorial.Rnw
blockcluster/vignettes/figs
blockcluster/vignettes/figs/distributionbinary.jpeg
blockcluster/vignettes/figs/orgdata.jpg
blockcluster/vignettes/figs/coclustersnake.jpg
blockcluster/vignettes/figs/coclustdata.jpg
blockcluster/vignettes/figs/binarysamplecocluster.png
blockcluster/vignettes/figs/coclustbinary1.jpg
blockcluster/vignettes/biblio.bib
blockcluster/MD5
blockcluster/build
blockcluster/build/vignette.rds
blockcluster/DESCRIPTION
blockcluster/man
blockcluster/man/summary-methods.Rd
blockcluster/man/ContingencyOptions-class.Rd
blockcluster/man/plot-methods.Rd
blockcluster/man/BinaryOptions-class.Rd
blockcluster/man/contingencydatalist.Rd
blockcluster/man/gaussiandata.Rd
blockcluster/man/CommonOptions-class.Rd
blockcluster/man/blockcluster.Rd
blockcluster/man/coclusterCategorical.Rd
blockcluster/man/coclusterStrategy.Rd
blockcluster/man/coclusterContingency.Rd
blockcluster/man/CategoricalOptions-class.Rd
blockcluster/man/binarydata.Rd
blockcluster/man/XEMStrategy.Rd
blockcluster/man/categoricaldata.Rd
blockcluster/man/cocluster.Rd
blockcluster/man/contingencydataunknown.Rd
blockcluster/man/getter-methods.Rd
blockcluster/man/coclusterContinuous.Rd
blockcluster/man/ContinuousOptions-class.Rd
blockcluster/man/coclusterBinary.Rd
blockcluster/cleanup