Description Usage Arguments Value Examples

This function performs Co-Clustering (simultaneous clustering of rows and columns ) for continuous data-sets using latent block models. It can also be used to perform semi-supervised co-clustering.

1 2 3 | ```
coclusterContinuous(data, semisupervised = FALSE,
rowlabels = integer(0), collabels = integer(0), model = NULL,
nbcocluster, strategy = coclusterStrategy(), nbCore = 1)
``` |

`data` |
Input data as matrix (or list containing data matrix.) | |||||||||||||||||||||

`semisupervised` |
Boolean value specifying whether to perform semi-supervised co-clustering or not. Make sure to provide row and/or column labels if specified value is true. The default value is false. | |||||||||||||||||||||

`rowlabels` |
Vector specifying the class of rows. The class number starts from zero. Provide -1 for unknown row class. | |||||||||||||||||||||

`collabels` |
Vector specifying the class of columns. The class number starts from zero. Provide -1 for unknown column class. | |||||||||||||||||||||

`model` |
This is the name of model. The following models exists for Gaussian data:
| |||||||||||||||||||||

`nbcocluster` |
Integer vector specifying the number of row and column clusters respectively. | |||||||||||||||||||||

`strategy` |
Object of class | |||||||||||||||||||||

`nbCore` |
number of thread to use (OpenMP must be available), 0 for all cores. Default value is 1. |

Return an object of `BinaryOptions`

or `ContingencyOptions`

or `ContinuousOptions`

depending on whether the data-type is Binary, Contingency or Continuous
respectively.

1 2 3 4 5 6 7 8 9 | ```
# Simple example with simulated continuous data
#load data
data(gaussiandata)
#usage of coclusterContinuous function in its most simplest form
out<-coclusterContinuous(gaussiandata,nbcocluster=c(2,3))
#Summarize the output results
summary(out)
#Plot the original and Co-clustered data
plot(out)
``` |

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.