coclusterBinary: Co-Clustering function for Binary data.

Description Usage Arguments Value Examples

Description

This function performs Co-Clustering (simultaneous clustering of rows and columns ) for Binary data-sets using latent block models. It can also be used to perform semi-supervised co-clustering.

Usage

1
2
3
coclusterBinary(data, semisupervised = FALSE, rowlabels = integer(0),
  collabels = integer(0), model = NULL, nbcocluster,
  strategy = coclusterStrategy(), a = 1, b = 1, nbCore = 1)

Arguments

data

Input data as matrix (or list containing data matrix)

semisupervised

Boolean value specifying whether to perform semi-supervised co-clustering or not. Make sure to provide row and/or column labels if specified value is true. The default value is false.

rowlabels

Integer Vector specifying the class of rows. The class number starts from zero. Provide -1 for unknown row class.

collabels

Integer Vector specifying the class of columns. The class number starts from zero. Provide -1 for unknown column class.

model

This is the name of model. The following models exists for Binary data:

Model Data-type Proportions Dispersion/Variance
pik_rhol_epsilonkl(Default) binary unequal unequal
pik_rhol_epsilon binary unequal equal
pi_rho_epsilonkl binary equal unequal
pi_rho_epsilon binary equal equal
nbcocluster

Integer vector specifying the number of row and column clusters respectively.

strategy

Object of class strategy.

a

First hyper-parameter in case of Bayesian settings. Default is 1 (no prior).

b

Second hyper-parameter in case of Bayesian settings. Default is 1 (no prior).

nbCore

number of thread to use (OpenMP must be available), 0 for all cores. Default value is 1.

Value

Return an object of BinaryOptions.

Examples

1
2
3
4
5
6
7
8
9
## Simple example with simulated binary data
## load data
data(binarydata)
## usage of coclusterBinary function in its most simplest form
out<-coclusterBinary(binarydata,nbcocluster=c(2,3))
## Summarize the output results
summary(out)
## Plot the original and Co-clustered data 
plot(out)

blockcluster documentation built on May 2, 2019, 3:41 p.m.