Nothing
      #' @importFrom stats coef confint binomial df.residual glm terms
#' @importFrom utils data
response_var <- function(model) {
  model$terms[[2]]
}
# name of the data set
data_name <- function(model) {
  model$call[[4]]
}
# number of observations
data_nrows <- function(model) {
  nrow(model$data)
}
# model convergence status
converge_status <- function(model) {
  model$converged
}
# residual degrees of freedom
residual_df <- function(model) {
  model$df.residual
}
# model degrees of freedom
model_df <- function(model) {
  model$df.null
}
# response profile
resp_profile <- function(model) {
  resp <- response_var(model)
  table(as.factor(model$data[[resp]]))
}
# analysis of maximum likelihood estimates
predictor_names <- function(model) {
  names(model$coefficients)
}
# model df
predictor_df <- function(model) {
  rep_len(1, model$rank)
}
# model estimate
predictor_est <- function(model) {
  unname(model$coefficients)
}
# extract columns from model summary
predictor_mine <- function(model, col_name = NULL) {
  unname(summary(model)$coefficients[, col_name])
}
# standard error
predictor_se <- function(model) {
  predictor_mine(model, "Std. Error")
}
# z value
predictor_zval <- function(model) {
  predictor_mine(model, "z value")
}
# p values
predictor_pval <- function(model) {
  predictor_mine(model, "Pr(>|z|)")
}
# odds ratio estimate
# odds ratio effects
odds_effect <- function(model) {
  names(coef(model))[-1]
}
# odds ratio point estimates
odds_point <- function(model) {
  unname(exp(coef(model))[-1])
}
# odds ratio confidence intervals
odds_conf_limit <- function(model) {
  n   <- length(model$coefficients)
  out <- exp(data.frame(confint(model))[2:n, ])
  colnames(out) <- c('`2.5 %`', '`97.5 %`')
  return(out)
}
# -2 log likelihood
mll <- function(model) {
  (logLik(model)[1]) * -2
}
# model class
model_class <- function(model) {
  class(model)[1]
}
# create intercept only model
i_model <- function(model) {
  dep <- response_var(model)
  dat <- model$data
  glm(
    paste0(dep, " ~ 1"), data = dat,
    family = binomial(link = "logit")
  )
}
# model dfs
model_d_f <- function(model) {
  length(model$coefficients)
}
# extract log likelihood from blr_lr_test
extract_ll <- function(model, n = 1) {
  blr_test_lr(model)$model_info[['log_lik']][n]
}
# log likelihood
model_ll <- function(model) {
  logLik(model)[1]
}
# output formatting
fc <- function(x, w) {
  x   <- as.character(x)
  ret <- format(x, width = w, justify = "centre")
  return(ret)
}
fs <- function() {
  x <- rep("  ")
  return(x)
}
fs1 <- function() {
  x <- rep("    ")
  return(x)
}
fs2 <- function() {
  x <- rep("     ")
  return(x)
}
fs3 <- function() {
  x <- rep("      ")
  return(x)
}
fs4 <- function() {
  x <- rep("         ")
  return(x)
}
f16 <- function() {
  x <- rep("                ")
  return(x)
}
fg <- function(x, w) {
  z <- as.character(x)
  y <- format(z, width = w, justify = "right")
  return(y)
}
fw <- function(x, w) {
  z <- format(as.character(x), width = w, justify = "right")
  return(z)
}
fl <- function(x, w) {
  x   <- as.character(x)
  ret <- format(x, width = w, justify = "left")
  return(ret)
}
mod_sel_data <- function(model) {
  model$data
}
#' @importFrom utils packageVersion menu install.packages
check_suggests <- function(pkg) {
  pkg_flag <- tryCatch(utils::packageVersion(pkg), error = function(e) NA)
  if (is.na(pkg_flag)) {
    msg <- message(paste0('\n', pkg, ' must be installed for this functionality.'))
    if (interactive()) {
      message(msg, "\nWould you like to install it?")
      if (utils::menu(c("Yes", "No")) == 1) {
        utils::install.packages(pkg)
      } else {
        stop(msg, call. = FALSE)
      }
    } else {
      stop(msg, call. = FALSE)
    }
  }
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.