Nothing
test_that("Available mock models run without errors", {
withr::local_options("bmm.silent" = 2)
skip_on_cran()
dat <- data.frame(
resp_error = rimm(n = 5),
Item2_rel = 2,
Item3_rel = -1.5,
spaD2 = 0.5,
spaD3 = 2
)
# two-parameter model mock fit
f <- bmf(kappa ~ 1, thetat ~ 1)
mock_fit <- bmm(f, dat, mixture2p(resp_error = "resp_error"),
backend = "mock", mock_fit = 1, rename = FALSE)
expect_equal(mock_fit$fit, 1)
expect_type(mock_fit$bmm, "list")
# three-parameter model mock fit
f <- bmf(kappa ~ 1, thetat ~ 1, thetant ~ 1)
model <- mixture3p(resp_error = "resp_error", set_size = 3,
nt_features = paste0("Item", 2:3, "_rel"))
mock_fit <- bmm(f, dat, model, backend = "mock", mock_fit = 1, rename = FALSE)
expect_equal(mock_fit$fit, 1)
expect_type(mock_fit$bmm, "list")
# imm_abc model mock fit
f <- bmf(kappa ~ 1, c ~ 1, a ~ 1)
model <- imm(resp_error = "resp_error", set_size = 3,
nt_features = paste0("Item", 2:3, "_rel"),
version = "abc")
mock_fit <- bmm(f, dat, model, backend = "mock", mock_fit = 1, rename = FALSE)
expect_equal(mock_fit$fit, 1)
expect_type(mock_fit$bmm, "list")
# imm_bsc model mock fit
f <- bmf(kappa ~ 1, c ~ 1, s ~ 1)
model <- imm(resp_error = "resp_error", set_size = 3,
nt_features = paste0("Item", 2:3, "_rel"),
nt_distances = paste0("spaD", 2:3),
version = "bsc")
mock_fit <- bmm(f, dat, model, backend = "mock", mock_fit = 1, rename = FALSE)
expect_equal(mock_fit$fit, 1)
expect_type(mock_fit$bmm, "list")
# imm_full model mock fit
f <- bmf(kappa ~ 1, c ~ 1, a ~ 1, s ~ 1)
model <- imm(resp_error = "resp_error", set_size = 3,
nt_features = paste0("Item", 2:3, "_rel"),
nt_distances = paste0("spaD", 2:3))
mock_fit <- bmm(f, dat, model, backend = "mock", mock_fit = 1, rename = FALSE)
expect_equal(mock_fit$fit, 1)
expect_type(mock_fit$bmm, "list")
})
test_that("Available models produce expected errors", {
withr::local_options("bmm.silent" = 2)
skip_on_cran()
dat <- data.frame(
resp_error = rimm(n = 5),
Item2_rel = 2,
Item3_rel = -1.5,
spaD2 = -0.5,
spaD3 = 2
)
# Missing data
okmodels <- supported_models(print_call = FALSE)
for (model in okmodels) {
model <- get_model(model)
expect_error(
bmm(bmf(kappa ~ 1), model = model(), backend = "mock",
mock_fit = 1, rename = FALSE),
"argument \"data\" is missing, with no default"
)
}
okmodels <- c("mixture3p", "imm")
for (model in okmodels) {
model1 <- get_model(model)(resp_error = "resp_error",
nt_features = "Item2_rel",
set_size = 5,
nt_distances = "spaD2")
expect_error(
bmm(bmf(kappa ~ 1), dat, model1, backend = "mock",
mock_fit = 1, rename = FALSE),
"'nt_features' should equal max\\(set_size\\)-1"
)
model2 <- get_model(model)(resp_error = "resp_error",
nt_features = "Item2_rel",
set_size = TRUE,
nt_distances = "spaD2")
expect_error(
bmm(bmf(kappa ~ 1), dat, model2, backend = "mock",
mock_fit = 1, rename = FALSE),
"must be either a variable in your data or "
)
}
for (version in c('bsc', 'full')) {
model1 <- imm(resp_error = "resp_error",
nt_features = paste0("Item", 2:3, "_rel"),
set_size = 3,
nt_distances = paste0("spaD", 2:3),
version = version)
expect_error(
bmm(bmf(kappa ~ 1), dat, model1, backend = "mock",
mock_fit = 1, rename = FALSE),
"All non-target distances to the target need to be postive."
)
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.