Nothing
# set-up ====
enumerate <- 0L
errorfun <- function(tt) {
if(isFALSE(tt)) stop(print(tt))
}
test_make_dims <- function(n) {
# make dimensions that are randomly of size 1 or 3:
out <- lapply(1:n, \(n)sample(c(1, 3), 1)) |> unlist()
# check if the dimensions produce a too large object.
# If so, replace one >1L dimension with 1L
if(prod(out) > 5000L) {
ind <- which(out > 1L)[1L]
out[ind] <- 1L
}
return(out)
}
.return_missing <- broadcast:::.return_missing
# logical ====
gen <- function(n) sample(c(TRUE, FALSE, NA), n, TRUE)
i <- 1L
op <- function(x, y) {
return(x == y)
}
v <- "logical"
basefun <- function(x, y) {
# using for-loop, because mapply really does not function properly here
out <- mapply(op, x, y, SIMPLIFY = FALSE, USE.NAMES = FALSE)
out <- as.logical(out)
dim(out) <- bc_dim(x, y)
return(out)
}
for(iSample in 1:5) { # re-do tests with different random configurations
for(iDimX in c(1, 2, 5, 8)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in c(1, 2, 5, 8)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
x <- array(gen(x.len), dim = x.dim)
y <- array(gen(y.len), dim = y.dim)
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# cat("\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected <- basefun((drop(x)), (drop(y)))
attributes(expected) <- NULL # must be a vector if tdim == NULL
out <- bcapply(x, y, op, v)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected <- basefun((x), (y))
out <- bcapply(x, y, op, v)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected <- basefun((x), rep_dim((y), tdim))
out <- bcapply(x, y, op, v)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected <- basefun(rep_dim((x), tdim), (y))
out <- bcapply(x, y, op, v)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected <- basefun(rep_dim((x), tdim), rep_dim((y), tdim))
out <- bcapply(x, y, op, v)
}
# END CASES
# ensure correct dimensions:
dim(expected) <- tdim
expect_equal(
expected, out
) |> errorfun()
i <- i + 1L
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
# integer (32bit) ====
gen <- function(n) sample(c(-10:10, NA), n, TRUE)
i <- 1L
op <- function(x, y) {
return(x + y)
}
v <- "integer"
basefun <- function(x, y) {
# using for-loop, because mapply really does not function properly here
out <- mapply(op, x, y, SIMPLIFY = FALSE, USE.NAMES = FALSE)
out <- as.integer(out)
dim(out) <- bc_dim(x, y)
return(out)
}
for(iSample in 1:5) { # re-do tests with different random configurations
for(iDimX in c(1, 2, 5, 8)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in c(1, 2, 5, 8)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
x <- array(gen(x.len), dim = x.dim)
y <- array(gen(y.len), dim = y.dim)
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# cat("\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected <- basefun((drop(x)), (drop(y)))
attributes(expected) <- NULL # must be a vector if tdim == NULL
out <- bcapply(x, y, op, v)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected <- basefun((x), (y))
out <- bcapply(x, y, op, v)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected <- basefun((x), rep_dim((y), tdim))
out <- bcapply(x, y, op, v)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected <- basefun(rep_dim((x), tdim), (y))
out <- bcapply(x, y, op, v)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected <- basefun(rep_dim((x), tdim), rep_dim((y), tdim))
out <- bcapply(x, y, op, v)
}
# END CASES
# ensure correct dimensions:
dim(expected) <- tdim
expect_equal(
expected, out
) |> errorfun()
i <- i + 1L
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
# double (64bit) ====
gen <- function(n) sample(c(rnorm(21), NA, NaN, Inf, -Inf), n, TRUE)
i <- 1L
op <- function(x, y) {
return(x + y)
}
v <- "double"
basefun <- function(x, y) {
# using for-loop, because mapply really does not function properly here
out <- mapply(op, x, y, SIMPLIFY = FALSE, USE.NAMES = FALSE)
out <- as.double(out)
dim(out) <- bc_dim(x, y)
return(out)
}
for(iSample in 1:5) { # re-do tests with different random configurations
for(iDimX in c(1, 2, 5, 8)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in c(1, 2, 5, 8)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
x <- array(gen(x.len), dim = x.dim)
y <- array(gen(y.len), dim = y.dim)
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# cat("\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected <- basefun((drop(x)), (drop(y)))
attributes(expected) <- NULL # must be a vector if tdim == NULL
out <- bcapply(x, y, op, v)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected <- basefun((x), (y))
out <- bcapply(x, y, op, v)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected <- basefun((x), rep_dim((y), tdim))
out <- bcapply(x, y, op, v)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected <- basefun(rep_dim((x), tdim), (y))
out <- bcapply(x, y, op, v)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected <- basefun(rep_dim((x), tdim), rep_dim((y), tdim))
out <- bcapply(x, y, op, v)
}
# END CASES
# ensure correct dimensions:
dim(expected) <- tdim
expect_equal(
expected, out
) |> errorfun()
i <- i + 1L
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
# complex ====
gen <- function(n) sample(c(rnorm(21), NA, NaN, Inf, -Inf), n, TRUE) + sample(c(rnorm(21), NA, NaN, Inf, -Inf), n, TRUE) * -1i
i <- 1L
op <- function(x, y) {
return(x + y)
}
v <- "complex"
basefun <- function(x, y) {
# using for-loop, because mapply really does not function properly here
out <- mapply(op, x, y, SIMPLIFY = FALSE, USE.NAMES = FALSE)
out <- as.complex(out)
dim(out) <- bc_dim(x, y)
return(out)
}
for(iSample in 1:5) { # re-do tests with different random configurations
for(iDimX in c(1, 2, 5, 8)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in c(1, 2, 5, 8)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
x <- array(gen(x.len), dim = x.dim)
y <- array(gen(y.len), dim = y.dim)
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# cat("\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected <- basefun((drop(x)), (drop(y)))
attributes(expected) <- NULL # must be a vector if tdim == NULL
out <- bcapply(x, y, op, v)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected <- basefun((x), (y))
out <- bcapply(x, y, op, v)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected <- basefun((x), rep_dim((y), tdim))
out <- bcapply(x, y, op, v)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected <- basefun(rep_dim((x), tdim), (y))
out <- bcapply(x, y, op, v)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected <- basefun(rep_dim((x), tdim), rep_dim((y), tdim))
out <- bcapply(x, y, op, v)
}
# END CASES
# ensure correct dimensions:
dim(expected) <- tdim
expect_equal(
expected, out
) |> errorfun()
i <- i + 1L
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
# string ====
gen <- function(n) sample(c(letters, month.abb), n, TRUE)
i <- 1L
op <- function(x, y) {
paste(x, y, collapse = "", sep = "")
}
v <- "character"
basefun <- function(x, y) {
# using for-loop, because mapply really does not function properly here
out <- mapply(op, x, y, SIMPLIFY = FALSE, USE.NAMES = FALSE)
out <- as.character(out)
dim(out) <- bc_dim(x, y)
return(out)
}
for(iSample in 1:5) { # re-do tests with different random configurations
for(iDimX in c(1, 2, 5, 8)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in c(1, 2, 5, 8)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
x <- array(gen(x.len), dim = x.dim)
y <- array(gen(y.len), dim = y.dim)
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# cat("\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected <- basefun((drop(x)), (drop(y)))
attributes(expected) <- NULL # must be a vector if tdim == NULL
out <- bcapply(x, y, op, v)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected <- basefun((x), (y))
out <- bcapply(x, y, op, v)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected <- basefun((x), rep_dim((y), tdim))
out <- bcapply(x, y, op, v)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected <- basefun(rep_dim((x), tdim), (y))
out <- bcapply(x, y, op, v)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected <- basefun(rep_dim((x), tdim), rep_dim((y), tdim))
out <- bcapply(x, y, op, v)
}
# END CASES
# ensure correct dimensions:
dim(expected) <- tdim
expect_equal(
expected, out
) |> errorfun()
i <- i + 1L
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.