Nothing
# set-up ====
enumerate <- 0L
errorfun <- function(tt) {
if(isFALSE(tt)) stop(print(tt))
}
# gcd simple ====
gcd <- function(x,y) { # straight-forward definition of gcd, for testing
r <- x %% y
return(ifelse(r, gcd(y, r), y))
}
expect_equal(
bc.i(10, 8, "gcd") |> drop(),
2
)
expect_equal(
bc.i(-10, 8, "gcd") |> drop(),
2
)
expect_equal(
bc.i(10, -8, "gcd") |> drop(),
2
)
x <- sample(1:100, 10)
y <- sample(1:100, 10)
expect_equal(
bc.i(x, y, "gcd"),
gcd(x, y)
)
enumerate <- enumerate + 4L
# gcd with zero ====
expect_equal(
bc.i(0, 0, "gcd") |> drop(),
NA_real_
)
samp <- sample(1:100, 10) * c(-1, 1)
for(i in samp) {
expect_equal(
bc.i(i, 0, "gcd") |> drop(),
i
) |> errorfun()
expect_equal(
bc.i(0, i, "gcd") |> drop(),
i
) |> errorfun()
enumerate <- enumerate + 2L
}
# gcd with NAs and Infs ====
x.data <- list(
NA,
NA_integer_,
c(Inf, -Inf, NA, NaN)
)
y.data <- list(
NA,
NA_integer_,
c(Inf, -Inf, NA, NaN)
)
for(i in seq_along(x.data)) {
for(j in seq_along(y.data)) {
x <- array(x.data[[i]])
y <- array(y.data[[j]])
out <- bc.i(x, y, "gcd")
expect <- rep(NA_real_, length(out)) |> array()
expect_equal(
expect, out
) |> errorfun()
enumerate <- enumerate + 1L
}
}
# gcd with datatypes ====
x.data <- list(
sample(1:100, 10),
sample(1:100, 10) |> as.double()
)
y.data <- list(
sample(1:100, 10),
sample(1:100, 10) |> as.double()
)
for(i in seq_along(x.data)) {
for(j in seq_along(y.data)) {
x <- array(x.data[[i]])
y <- array(y.data[[j]])
out <- bc.i(x, y, "gcd")
expect <- gcd(as.integer(x), as.integer(y)) |> as.array()
expect_equal(
expect, out
) |> errorfun()
enumerate <- enumerate + 1L
}
}
# gcd with dimensions ====
test_make_dims <- function(n) {
# make dimensions that are randomly of size 1 or 5:
out <- lapply(1:n, \(n)sample(c(1, 5), 1)) |> unlist()
# check if the dimensions produce a too large object.
# If so, replace one >1L dimension with 1L
if(prod(out) > 5000L) {
ind <- which(out > 1L)[1L]
out[ind] <- 1L
}
return(out)
}
.return_missing <- broadcast:::.return_missing
nres <- 5 * 5 # number of tests performed here
expected <- out <- vector("list", nres)
op <- "gcd"
i <- 1L
for(iDimX in sample(1:8, 3L)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in sample(1:8, 3L)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
x <- array(sample(1:10), x.dim)
y <- array(sample(1:10), y.dim)
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# cat("\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected[[i]] <- gcd(as_dbl(drop(x)), as_dbl(drop(y)))
attributes(expected[[i]]) <- NULL # must be a vector if tdim == NULL
out[[i]] <- bc.i(x, y, op)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected[[i]] <- gcd(as.double(x), as.double(y))
out[[i]] <- bc.i(x, y, op)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected[[i]] <- gcd(as.double(x), rep_dim(as_dbl(y), tdim))
out[[i]] <- bc.i(x, y, op)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected[[i]] <- gcd(rep_dim(as_dbl(x), tdim), as.double(y))
out[[i]] <- bc.i(x, y, op)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected[[i]] <- gcd(rep_dim(as_dbl(x), tdim), rep_dim(as_dbl(y), tdim))
out[[i]] <- bc.i(x, y, op)
}
# END CASES
# R is sometimes inconsistent whether it returns NA or NaN
# for example: NaN + NaN = NA, but NaN - NaN = NaN
# the 'broadcast' package prefers to remain consistent in all NA/NaN cases
# the following code is meant to ensure NaN results turn to NA, like 'broadcast' does
ind.NaN <- is.nan(expected[[i]])
expected[[i]][ind.NaN] <- .return_missing(expected[[i]][ind.NaN])
ind.NaN <- is.nan(out[[i]])
out[[i]][ind.NaN] <- .return_missing(out[[i]][ind.NaN])
# ensure correct dimensions:
dim(expected[[i]]) <- tdim
i <- i + 1L
}
}
enumerate <- enumerate + i # count number of tests
# test results:
expect_equal(
expected, out
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.