Nothing
# set-up ====
enumerate <- 0L
errorfun <- function(tt) {
if(isFALSE(tt)) stop(print(tt))
}
test_make_dims <- function(n) {
# make dimensions that are randomly of size 1 or 5:
out <- lapply(1:n, \(n)sample(c(1, 5), 1)) |> unlist()
# check if the dimensions produce a too large object.
# If so, replace one >1L dimension with 1L
if(prod(out) > 5000L) {
ind <- which(out > 1L)[1L]
out[ind] <- 1L
}
return(out)
}
.return_missing <- broadcast:::.return_missing
ab <- broadcast:::.as.broadcaster
gen <- function() sample(c(rnorm(10), NA, NA, NaN, NaN, Inf, Inf, -Inf, -Inf))
# plus ====
nres <- 10 * 5 * 5 * 3 # number of tests performed here
expected <- out <- vector("list", nres)
i <- 1L
x.data <- gen() + gen() * -1i
y.data <- gen() + gen() * -1i
basefun <- function(x, y) {
out <- x + y
dim(out) <- bc_dim(x, y)
return(out)
}
for(iSample in 1:10) { # re-do tests with different random configurations
for(iDimX in sample(1:8, 3L)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in sample(1:8, 3L)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
x <- array(x.data, dim = x.dim)
y <- array(y.data, dim = y.dim)
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# cat("\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected[[i]] <- basefun(as_cplx(drop(x)), as_cplx(drop(y)))
attributes(expected[[i]]) <- NULL # must be a vector if tdim == NULL
out[[i]] <- ab(x) + ab(y)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected[[i]] <- basefun(as.complex(x), as.complex(y))
out[[i]] <- ab(x) + ab(y)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected[[i]] <- basefun(as.complex(x), rep_dim(as_cplx(y), tdim))
out[[i]] <- ab(x) + ab(y)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected[[i]] <- basefun(rep_dim(as_cplx(x), tdim), as.complex(y))
out[[i]] <- ab(x) + ab(y)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected[[i]] <- basefun(rep_dim(as_cplx(x), tdim), rep_dim(as_cplx(y), tdim))
out[[i]] <- ab(x) + ab(y)
}
# END CASES
# R is sometimes inconsistent whether it returns NA or NaN
# for example: NaN + NaN = NA, but NaN - NaN = NaN
# the 'broadcast' package prefers to remain consistent in all NA/NaN cases
# the following code is meant to ensure NaN results turn to NA, like 'broadcast' does
ind.NaN <- is.nan(expected[[i]])
expected[[i]][ind.NaN] <- .return_missing(expected[[i]][ind.NaN])
ind.NaN <- is.nan(out[[i]])
out[[i]][ind.NaN] <- .return_missing(out[[i]][ind.NaN])
# ensure correct dimensions:
dim(expected[[i]]) <- tdim
out[[i]] <- unclass(out[[i]])
i <- i + 1L
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
expect_equal(
expected, out
)
# min ====
nres <- 10 * 5 * 5 * 3 # number of tests performed here
expected <- out <- vector("list", nres)
op <- "-"
i <- 1L
x.data <- gen() + gen() * -1i
y.data <- gen() + gen() * -1i
basefun <- function(x, y) {
out <- x - y
out[is.na(x)|is.na(y)] <- NA
dim(out) <- bc_dim(x, y)
return(out)
}
for(iSample in 1:10) { # re-do tests with different random configurations
for(iDimX in sample(1:8, 3L)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in sample(1:8, 3L)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
x <- array(x.data, dim = x.dim)
y <- array(y.data, dim = y.dim)
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# cat("\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected[[i]] <- basefun(as_cplx(drop(x)), as_cplx(drop(y)))
attributes(expected[[i]]) <- NULL # must be a vector if tdim == NULL
out[[i]] <- ab(x) - ab(y)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected[[i]] <- basefun(as.complex(x), as.complex(y))
out[[i]] <- ab(x) - ab(y)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected[[i]] <- basefun(as.complex(x), rep_dim(as_cplx(y), tdim))
out[[i]] <- ab(x) - ab(y)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected[[i]] <- basefun(rep_dim(as_cplx(x), tdim), as.complex(y))
out[[i]] <- ab(x) - ab(y)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected[[i]] <- basefun(rep_dim(as_cplx(x), tdim), rep_dim(as_cplx(y), tdim))
out[[i]] <- ab(x) - ab(y)
}
# END CASES
# R is sometimes inconsistent whether it returns NA or NaN
# for example: NaN + NaN = NA, but NaN - NaN = NaN
# the 'broadcast' package prefers to remain consistent in all NA/NaN cases
# the following code is meant to ensure NaN results turn to NA, like 'broadcast' does
ind.NaN <- is.nan(expected[[i]])
expected[[i]][ind.NaN] <- .return_missing(expected[[i]][ind.NaN])
ind.NaN <- is.nan(out[[i]])
out[[i]][ind.NaN] <- .return_missing(out[[i]][ind.NaN])
# ensure correct dimensions:
dim(expected[[i]]) <- tdim
out[[i]] <- unclass(out[[i]])
i <- i + 1L
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
expect_equal(
expected, out
)
# multiply ====
nres <- 10 * 5 * 5 * 3 # number of tests performed here
expected <- out <- vector("list", nres)
op <- "*"
i <- 1L
x.data <- gen() + gen() * -1i
y.data <- gen() + gen() * -1i
basefun <- function(x, y) {
out <- x * y
out[is.na(x)|is.na(y)] <- NA
dim(out) <- bc_dim(x, y)
return(out)
}
for(iSample in 1:10) { # re-do tests with different random configurations
for(iDimX in sample(1:8, 3L)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in sample(1:8, 3L)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
x <- array(x.data, dim = x.dim)
y <- array(y.data, dim = y.dim)
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# cat("\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected[[i]] <- basefun(as_cplx(drop(x)), as_cplx(drop(y)))
attributes(expected[[i]]) <- NULL # must be a vector if tdim == NULL
out[[i]] <- ab(x) * ab(y)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected[[i]] <- basefun(as.complex(x), as.complex(y))
out[[i]] <- ab(x) * ab(y)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected[[i]] <- basefun(as.complex(x), rep_dim(as_cplx(y), tdim))
out[[i]] <- ab(x) * ab(y)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected[[i]] <- basefun(rep_dim(as_cplx(x), tdim), as.complex(y))
out[[i]] <- ab(x) * ab(y)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected[[i]] <- basefun(rep_dim(as_cplx(x), tdim), rep_dim(as_cplx(y), tdim))
out[[i]] <- ab(x) * ab(y)
}
# END CASES
# R is sometimes inconsistent whether it returns NA or NaN
# for example: NaN + NaN = NA, but NaN - NaN = NaN
# the 'broadcast' package prefers to remain consistent in all NA/NaN cases
# the following code is meant to ensure NaN results turn to NA, like 'broadcast' does
ind.NaN <- is.nan(expected[[i]])
expected[[i]][ind.NaN] <- .return_missing(expected[[i]][ind.NaN])
ind.NaN <- is.nan(out[[i]])
out[[i]][ind.NaN] <- .return_missing(out[[i]][ind.NaN])
# ensure correct dimensions:
dim(expected[[i]]) <- tdim
out[[i]] <- unclass(out[[i]])
i <- i + 1L
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
expect_equal(
expected, out
)
# div ====
nres <- 10 * 5 * 5 * 3 # number of tests performed here
expected <- out <- vector("list", nres)
op <- "/"
i <- 1L
x.data <- gen() + gen() * -1i
y.data <- gen() + gen() * -1i
basefun <- function(x, y) {
out <- x / y
out[is.na(x)|is.na(y)] <- NA
dim(out) <- bc_dim(x, y)
return(out)
}
for(iSample in 1:10) { # re-do tests with different random configurations
for(iDimX in sample(1:8, 3L)) { # different dimensions for x
x.dim <- test_make_dims(iDimX)
x.len <- prod(x.dim)
for(iDimY in sample(1:8, 3L)) { # different dimensions for y
y.dim <- test_make_dims(iDimY)
y.len <- prod(y.dim)
x <- array(x.data, dim = x.dim)
y <- array(y.data, dim = y.dim)
# PREPARE FOR TEST
tdim <- bc_dim(x, y)
# print(x)
# print(y)
# print(tdim)
# cat("\n")
# DO TESTS BY CASE:
if(is.null(tdim)) {
# CASE 1: result has no dimensions (for ex. when x and y are both scalars)
expected[[i]] <- basefun(as_cplx(drop(x)), as_cplx(drop(y)))
attributes(expected[[i]]) <- NULL # must be a vector if tdim == NULL
out[[i]] <- ab(x) / ab(y)
}
else if(length(y) == 1L && length(x) == 1L) {
# CASE 2: x and y are both scalar arrays
expected[[i]] <- basefun(as.complex(x), as.complex(y))
out[[i]] <- ab(x) / ab(y)
}
else if(length(x) == 1L && length(y) > 1L) {
# CASE 3: x is scalar, y is not
expected[[i]] <- basefun(as.complex(x), rep_dim(as_cplx(y), tdim))
out[[i]] <- ab(x) / ab(y)
}
else if(length(y) == 1L && length(x) > 1L) {
# CASE 4: y is scalar, x is not
expected[[i]] <- basefun(rep_dim(as_cplx(x), tdim), as.complex(y))
out[[i]] <- ab(x) / ab(y)
}
else {
# CASE 5: x and y are both non-reducible arrays
expected[[i]] <- basefun(rep_dim(as_cplx(x), tdim), rep_dim(as_cplx(y), tdim))
out[[i]] <- ab(x) / ab(y)
}
# END CASES
# R is sometimes inconsistent whether it returns NA or NaN
# for example: NaN + NaN = NA, but NaN - NaN = NaN
# the 'broadcast' package prefers to remain consistent in all NA/NaN cases
# the following code is meant to ensure NaN results turn to NA, like 'broadcast' does
ind.NaN <- is.nan(expected[[i]])
expected[[i]][ind.NaN] <- .return_missing(expected[[i]][ind.NaN])
ind.NaN <- is.nan(out[[i]])
out[[i]][ind.NaN] <- .return_missing(out[[i]][ind.NaN])
# ensure correct dimensions:
dim(expected[[i]]) <- tdim
out[[i]] <- unclass(out[[i]])
i <- i + 1L
}
}
}
enumerate <- enumerate + i # count number of tests
# test results:
expect_equal(
expected, out
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.