inst/tinytest/overload/test-math_i.R

# set-up ====
enumerate <- 0L
errorfun <- function(tt) {
  
  if(isFALSE(tt)) stop(print(tt))
}

test_make_dims <- function(n) {
  
  # make dimensions that are randomly of size 1 or 5:
  out <- lapply(1:n, \(n)sample(c(1, 5), 1)) |> unlist()
  
  # check if the dimensions produce a too large object.
  # If so, replace one >1L dimension with 1L
  if(prod(out) > 5000L) {
    ind <- which(out > 1L)[1L]
    out[ind] <- 1L
  }
  return(out)
}
.return_missing <- broadcast:::.return_missing

ab <- broadcast:::.as.broadcaster


# mod ====
nres <- 5 * 5 * 5 * 3 * 3 # number of tests performed here
expected <- out <- vector("list", nres)

i <- 1L
for(iSample in 1:5) { # re-do tests with different random configurations
  x.data <- list(
    sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
    sample(c(-10:10, NA), 100, TRUE), # integer
    sample(c(-10.0:10.0, NA, NaN, Inf, -Inf), 100, TRUE) # double

  )
  y.data <- list(
    sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
    sample(c(-10:10, NA), 100, TRUE), # integer
    sample(c(-10.0:10.0, NA, NaN, Inf, -Inf), 100, TRUE) # double

  )
  for(iDimX in sample(1:8, 3L)) { # different dimensions for x
    x.dim <- test_make_dims(iDimX)
    x.len <- prod(x.dim)
    for(iDimY in sample(1:8, 3L)) { # different dimensions for y
      y.dim <- test_make_dims(iDimY)
      y.len <- prod(y.dim)

      for(iDataX in 1:length(x.data)) { # different data types for x
        x <- array(x.data[[iDataX]][1:x.len], dim = x.dim)
        for(iDataY in 1:length(y.data)) { # different data types for y
          y <- array(y.data[[iDataY]][1:y.len], dim = y.dim)
          
          # PREPARE FOR TEST
          tdim <- bc_dim(x, y)
          # print(x)
          # print(y)
          # print(tdim)
          # # cat("\n")
          # 
          # cat("dim(x) = ", dim(x), "\n")
          # cat("dim(y) = ", dim(y), "\n")
          
          # DO TESTS BY CASE:
          if(is.null(tdim)) {
            # CASE 1: result has no dimensions (for ex. when x and y are both scalars)
            expected[[i]] <- trunc(as_dbl(drop(x))) %% trunc(as_dbl(drop(y)))

            # attributes(expected[[i]]) <- NULL # must be a vector if tdim == NULL
            out[[i]] <- ab(x) %% ab(y)
          }
          else if(length(y) == 1L && length(x) == 1L) {
            # CASE 2: x and y are both scalar arrays
            expected[[i]] <- trunc(as.double(x)) %% trunc(as.double(y))
            out[[i]] <- ab(x) %% ab(y)
          }
          else if(length(x) == 1L && length(y) > 1L) {
            # CASE 3: x is scalar, y is not
            expected[[i]] <- trunc(as.double(x)) %% trunc(rep_dim(as_dbl(y), tdim))
            out[[i]] <- ab(x) %% ab(y)
          }
          else if(length(y) == 1L && length(x) > 1L) {
            # CASE 4: y is scalar, x is not
            expected[[i]] <- trunc(rep_dim(as_dbl(x), tdim)) %% trunc(as.double(y))
            out[[i]] <- ab(x) %% ab(y)
          }
          else {
            # CASE 5: x and y are both non-reducible arrays
            expected[[i]] <- trunc(rep_dim(as_dbl(x), tdim)) %% trunc(rep_dim(as_dbl(y), tdim))
            out[[i]] <- ab(x) %% ab(y)
          }
          # END CASES
          
          # R is sometimes inconsistent whether it returns NA or NaN
          # for example: NaN + NaN = NA, but NaN - NaN = NaN
          # the 'broadcast' package prefers to remain consistent in all NA/NaN cases
          # the following code is meant to ensure NaN results turn to NA, like 'broadcast' does
          ind.NaN <- is.nan(expected[[i]])
          expected[[i]][ind.NaN] <- .return_missing(expected[[i]][ind.NaN])
          ind.NaN <- is.nan(out[[i]])
          out[[i]][ind.NaN] <- .return_missing(out[[i]][ind.NaN])
          
          # ensure correct dimensions:
          dim(expected[[i]]) <- tdim
          
          out[[i]] <- unclass(out[[i]])
          
          i <- i + 1L
        }
      }
    }
  }
}
enumerate <- enumerate + i # count number of tests
# test results:
expect_equal(
  expected, out
)



# idiv ====
nres <- 5 * 5 * 5 * 3 * 3 # number of tests performed here
expected <- out <- vector("list", nres)

i <- 1L
for(iSample in 1:5) { # re-do tests with different random configurations
  x.data <- list(
    sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
    sample(c(-10:10, NA), 100, TRUE), # integer
    sample(c(-10.0:10.0, NA, NaN, Inf, -Inf), 100, TRUE) # double
    
  )
  y.data <- list(
    sample(c(TRUE, FALSE, NA), 100, TRUE), # logical
    sample(c(-10:10, NA), 100, TRUE), # integer
    sample(c(-10.0:10.0, NA, NaN, Inf, -Inf), 100, TRUE) # double
    
  )
  for(iDimX in sample(1:8, 3L)) { # different dimensions for x
    x.dim <- test_make_dims(iDimX)
    x.len <- prod(x.dim)
    for(iDimY in sample(1:8, 3L)) { # different dimensions for y
      y.dim <- test_make_dims(iDimY)
      y.len <- prod(y.dim)
      
      for(iDataX in 1:length(x.data)) { # different data types for x
        x <- array(x.data[[iDataX]][1:x.len], dim = x.dim)
        for(iDataY in 1:length(y.data)) { # different data types for y
          y <- array(y.data[[iDataY]][1:y.len], dim = y.dim)
          
          # PREPARE FOR TEST
          tdim <- bc_dim(x, y)
          # print(x)
          # print(y)
          # print(tdim)
          # # cat("\n")
          # 
          # cat("dim(x) = ", dim(x), "\n")
          # cat("dim(y) = ", dim(y), "\n")
          
          # DO TESTS BY CASE:
          if(is.null(tdim)) {
            # CASE 1: result has no dimensions (for ex. when x and y are both scalars)
            expected[[i]] <- trunc(as_dbl(drop(x))) %/% trunc(as_dbl(drop(y)))
            
            # attributes(expected[[i]]) <- NULL # must be a vector if tdim == NULL
            out[[i]] <- ab(x) %/% ab(y)
          }
          else if(length(y) == 1L && length(x) == 1L) {
            # CASE 2: x and y are both scalar arrays
            expected[[i]] <- trunc(as.double(x)) %/% trunc(as.double(y))
            out[[i]] <- ab(x) %/% ab(y)
          }
          else if(length(x) == 1L && length(y) > 1L) {
            # CASE 3: x is scalar, y is not
            expected[[i]] <- trunc(as.double(x)) %/% trunc(rep_dim(as_dbl(y), tdim))
            out[[i]] <- ab(x) %/% ab(y)
          }
          else if(length(y) == 1L && length(x) > 1L) {
            # CASE 4: y is scalar, x is not
            expected[[i]] <- trunc(rep_dim(as_dbl(x), tdim)) %/% trunc(as.double(y))
            out[[i]] <- ab(x) %/% ab(y)
          }
          else {
            # CASE 5: x and y are both non-reducible arrays
            expected[[i]] <- trunc(rep_dim(as_dbl(x), tdim)) %/% trunc(rep_dim(as_dbl(y), tdim))
            out[[i]] <- ab(x) %/% ab(y)
          }
          # END CASES
          
          # R is sometimes inconsistent whether it returns NA or NaN
          # for example: NaN + NaN = NA, but NaN - NaN = NaN
          # the 'broadcast' package prefers to remain consistent in all NA/NaN cases
          # the following code is meant to ensure NaN results turn to NA, like 'broadcast' does
          ind.NaN <- is.nan(expected[[i]])
          expected[[i]][ind.NaN] <- .return_missing(expected[[i]][ind.NaN])
          ind.NaN <- is.nan(out[[i]])
          out[[i]][ind.NaN] <- .return_missing(out[[i]][ind.NaN])
          
          # ensure correct dimensions:
          dim(expected[[i]]) <- tdim
          
          out[[i]] <- unclass(out[[i]])
          
          i <- i + 1L
        }
      }
    }
  }
}
enumerate <- enumerate + i # count number of tests
# test results:
expect_equal(
  expected, out
)

Try the broadcast package in your browser

Any scripts or data that you put into this service are public.

broadcast documentation built on Sept. 15, 2025, 5:08 p.m.