View source: R/marginal_tidiers.R
tidy_marginal_means | R Documentation |
marginaleffects::marginal_means()
This function is deprecated. Use instead
tidy_marginal_predictions()
with
the option newdata = "marginalmeans"
.
tidy_marginal_means(x, conf.int = TRUE, conf.level = 0.95, ...)
x |
(a model object, e.g. |
conf.int |
( |
conf.level |
( |
... |
Additional parameters passed to
|
Use marginaleffects::marginal_means()
to estimate marginal means and
return a tibble tidied in a way that it could be used by broom.helpers
functions. See marginaleffects::marginal_means()()
for a list of supported
models.
marginaleffects::marginal_means()
estimate marginal means:
adjusted predictions, averaged across a grid of categorical predictors,
holding other numeric predictors at their means. Please refer to the
documentation page of marginaleffects::marginal_means()
. Marginal means
are defined only for categorical variables.
For more information, see vignette("marginal_tidiers", "broom.helpers")
.
marginaleffects::marginal_means()
Other marginal_tieders:
tidy_all_effects()
,
tidy_avg_comparisons()
,
tidy_avg_slopes()
,
tidy_ggpredict()
,
tidy_marginal_contrasts()
,
tidy_marginal_predictions()
,
tidy_margins()
# Average Marginal Means
df <- Titanic |>
dplyr::as_tibble() |>
tidyr::uncount(n) |>
dplyr::mutate(Survived = factor(Survived, c("No", "Yes")))
mod <- glm(
Survived ~ Class + Age + Sex,
data = df, family = binomial
)
tidy_marginal_means(mod)
tidy_plus_plus(mod, tidy_fun = tidy_marginal_means)
mod2 <- lm(Petal.Length ~ poly(Petal.Width, 2) + Species, data = iris)
tidy_marginal_means(mod2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.