tidy.TukeyHSD: Tidy a(n) TukeyHSD object

View source: R/stats-anova-tidiers.R

tidy.TukeyHSDR Documentation

Tidy a(n) TukeyHSD object

Description

Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.

Usage

## S3 method for class 'TukeyHSD'
tidy(x, ...)

Arguments

x

A TukeyHSD object return from stats::TukeyHSD().

...

Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in ..., where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass conf.lvel = 0.9, all computation will proceed using conf.level = 0.95. Two exceptions here are:

  • tidy() methods will warn when supplied an exponentiate argument if it will be ignored.

  • augment() methods will warn when supplied a newdata argument if it will be ignored.

Value

A tibble::tibble() with columns:

adj.p.value

P-value adjusted for multiple comparisons.

conf.high

Upper bound on the confidence interval for the estimate.

conf.low

Lower bound on the confidence interval for the estimate.

contrast

Levels being compared.

estimate

The estimated value of the regression term.

null.value

Value to which the estimate is compared.

term

The name of the regression term.

See Also

tidy(), stats::TukeyHSD()

Other anova tidiers: glance.anova(), glance.aov(), tidy.anova(), tidy.aov(), tidy.aovlist(), tidy.manova()

Examples


fm1 <- aov(breaks ~ wool + tension, data = warpbreaks)
thsd <- TukeyHSD(fm1, "tension", ordered = TRUE)
tidy(thsd)

# may include comparisons on multiple terms
fm2 <- aov(mpg ~ as.factor(gear) * as.factor(cyl), data = mtcars)
tidy(TukeyHSD(fm2))

broom documentation built on Sept. 30, 2024, 9:29 a.m.