View source: R/glmnet-cv-glmnet-tidiers.R
tidy.cv.glmnet | R Documentation |
Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
## S3 method for class 'cv.glmnet'
tidy(x, ...)
x |
A |
... |
Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in
|
A tibble::tibble()
with columns:
lambda |
Value of penalty parameter lambda. |
nzero |
Number of non-zero coefficients for the given lambda. |
std.error |
The standard error of the regression term. |
conf.low |
lower bound on confidence interval for cross-validation estimated loss. |
conf.high |
upper bound on confidence interval for cross-validation estimated loss. |
estimate |
Median loss across all cross-validation folds for a given lamdba |
tidy()
, glmnet::cv.glmnet()
Other glmnet tidiers:
glance.cv.glmnet()
,
glance.glmnet()
,
tidy.glmnet()
# load libraries for models and data
library(glmnet)
set.seed(27)
nobs <- 100
nvar <- 50
real <- 5
x <- matrix(rnorm(nobs * nvar), nobs, nvar)
beta <- c(rnorm(real, 0, 1), rep(0, nvar - real))
y <- c(t(beta) %*% t(x)) + rnorm(nvar, sd = 3)
cvfit1 <- cv.glmnet(x, y)
tidy(cvfit1)
glance(cvfit1)
library(ggplot2)
tidied_cv <- tidy(cvfit1)
glance_cv <- glance(cvfit1)
# plot of MSE as a function of lambda
g <- ggplot(tidied_cv, aes(lambda, estimate)) +
geom_line() +
scale_x_log10()
g
# plot of MSE as a function of lambda with confidence ribbon
g <- g + geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = .25)
g
# plot of MSE as a function of lambda with confidence ribbon and choices
# of minimum lambda marked
g <- g +
geom_vline(xintercept = glance_cv$lambda.min) +
geom_vline(xintercept = glance_cv$lambda.1se, lty = 2)
g
# plot of number of zeros for each choice of lambda
ggplot(tidied_cv, aes(lambda, nzero)) +
geom_line() +
scale_x_log10()
# coefficient plot with min lambda shown
tidied <- tidy(cvfit1$glmnet.fit)
ggplot(tidied, aes(lambda, estimate, group = term)) +
scale_x_log10() +
geom_line() +
geom_vline(xintercept = glance_cv$lambda.min) +
geom_vline(xintercept = glance_cv$lambda.1se, lty = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.