View source: R/stats-factanal.R
| tidy.factanal | R Documentation | 
Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
## S3 method for class 'factanal'
tidy(x, ...)
x | 
 A   | 
... | 
 Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in  
  | 
A tibble::tibble() with columns:
variable | 
 Variable under consideration.  | 
uniqueness | 
 Proportion of residual, or unexplained variance  | 
flX | 
 Factor loading for level X.  | 
tidy(), stats::factanal()
Other factanal tidiers: 
augment.factanal(),
glance.factanal()
set.seed(123)
# generate data
library(dplyr)
library(purrr)
m1 <- tibble(
  v1 = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 4, 5, 6),
  v2 = c(1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 3, 4, 3, 3, 3, 4, 6, 5),
  v3 = c(3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 6),
  v4 = c(3, 3, 4, 3, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 5, 6, 4),
  v5 = c(1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 6, 4, 5),
  v6 = c(1, 1, 1, 2, 1, 3, 3, 3, 4, 3, 1, 1, 1, 2, 1, 6, 5, 4)
)
# new data
m2 <- map_dfr(m1, rev)
# factor analysis objects
fit1 <- factanal(m1, factors = 3, scores = "Bartlett")
fit2 <- factanal(m1, factors = 3, scores = "regression")
# tidying the object
tidy(fit1)
tidy(fit2)
# augmented dataframe
augment(fit1)
augment(fit2)
# augmented dataframe (with new data)
augment(fit1, data = m2)
augment(fit2, data = m2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.