R/polca-tidiers.R

Defines functions reshape_probs glance.poLCA augment.poLCA tidy.poLCA

Documented in augment.poLCA glance.poLCA tidy.poLCA

#' @templateVar class poLCA
#' @template title_desc_tidy
#'
#' @param x A `poLCA` object returned from [poLCA::poLCA()].
#' @template param_unused_dots
#'
#' @evalRd return_tidy(
#'   variable = "Manifest variable",
#'   "class",
#'   "outcome",
#'   estimate = "Estimated class-conditional response probability",
#'   "std.error"
#' )
#'
#' @examplesIf rlang::is_installed("poLCA")
#'
#' # load libraries for models and data
#' library(poLCA)
#' library(dplyr)
#'
#' # generate data
#' data(values)
#' 
#' f <- cbind(A, B, C, D) ~ 1
#' 
#' # fit model
#' M1 <- poLCA(f, values, nclass = 2, verbose = FALSE)
#'
#' M1
#' 
#' # summarize model fit with tidiers + visualization
#' tidy(M1)
#' augment(M1)
#' glance(M1)
#'
#' library(ggplot2)
#'
#' ggplot(tidy(M1), aes(factor(class), estimate, fill = factor(outcome))) +
#'   geom_bar(stat = "identity", width = 1) +
#'   facet_wrap(~variable)
#'   
#' # three-class model with a single covariate.
#' data(election)
#' 
#' f2a <- cbind(
#'   MORALG, CARESG, KNOWG, LEADG, DISHONG, INTELG,
#'   MORALB, CARESB, KNOWB, LEADB, DISHONB, INTELB
#' ) ~ PARTY
#' 
#' nes2a <- poLCA(f2a, election, nclass = 3, nrep = 5, verbose = FALSE)
#'
#' td <- tidy(nes2a)
#' td
#'
#' ggplot(td, aes(outcome, estimate, color = factor(class), group = class)) +
#'   geom_line() +
#'   facet_wrap(~variable, nrow = 2) +
#'   theme(axis.text.x = element_text(angle = 90, hjust = 1))
#'
#' au <- augment(nes2a)
#' 
#' au
#' 
#' count(au, .class)
#'
#' # if the original data is provided, it leads to NAs in new columns
#' # for rows that weren't predicted
#' au2 <- augment(nes2a, data = election)
#' 
#' au2
#' 
#' dim(au2)
#' 
#' @aliases poLCA_tidiers
#' @export
#' @seealso [tidy()], [poLCA::poLCA()]
#' @family poLCA tidiers
#'
tidy.poLCA <- function(x, ...) {
  probs <- purrr::map2_df(x$probs, names(x$probs), reshape_probs) %>%
    mutate(variable = as.character(variable)) %>%
    transmute(variable,
      class = stringr::str_match(Var1, "class (.*):")[, 2],
      outcome = Var2,
      estimate = value
    )

  if (all(stringr::str_detect(probs$outcome, "^Pr\\(\\d*\\)$"))) {
    probs$outcome <- as.numeric(stringr::str_match(
      probs$outcome,
      "Pr\\((\\d*)\\)"
    )[, 2])
  }

  probs <- probs %>%
    mutate(class = utils::type.convert(class))

  probs_se <- purrr::map2_df(x$probs.se, names(x$probs.se), reshape_probs) %>%
    mutate(variable = as.character(variable)) %>%
    mutate_if(is.factor, as.integer)
  
  probs$std.error <- probs_se$value

  as_tibble(probs)
}

#' @templateVar class poLCA
#' @template title_desc_augment
#'
#' @inherit tidy.poLCA params examples
#' @template param_data
#'
#' @evalRd return_augment(
#'   .fitted = FALSE,
#'   .resid = FALSE,
#'   ".class",
#'   ".probability"
#' )
#'
#' @details If the `data` argument is given, those columns are included in
#'   the output (only rows for which predictions could be made).
#'   Otherwise, the `y` element of the poLCA object, which contains the
#'   manifest variables used to fit the model, are used, along with any
#'   covariates, if present, in `x`.
#'
#'   Note that while the probability of all the classes (not just the predicted
#'   modal class) can be found in the `posterior` element, these are not
#'   included in the augmented output.
#'
#' @export
#' @seealso [augment()], [poLCA::poLCA()]
#' @family poLCA tidiers
augment.poLCA <- function(x, data = NULL, ...) {
  check_ellipses("newdata", "augment", "poLCA", ...)
  
  indices <- cbind(seq_len(nrow(x$posterior)), x$predclass)

  ret <- tibble(
    .class = x$predclass,
    .probability = x$posterior[indices]
  )

  if (is.null(data)) {
    data <- bind_cols(x$y, x$x)
  } else {
    if (nrow(data) != nrow(ret)) {
      # Rows may have been removed for NAs. For those rows, the new columns NAs
      ret$.rownames <- rownames(x$y)
      ret <- ret[rownames(data), ]
    }
  }

  as_tibble(bind_cols(data, ret))
}

#' @templateVar class poLCA
#' @template title_desc_glance
#'
#' @inherit tidy.poLCA params examples
#'
#' @evalRd return_glance(
#'   "logLik",
#'   "AIC",
#'   "BIC",
#'   "chi.squared",
#'   "df",
#'   "df.residual",
#'   g.squared = "The likelihood ratio/deviance statistic",
#'   "nobs"
#' )
#'
#' @export
#' @seealso [glance()], [poLCA::poLCA()]
#' @family poLCA tidiers
glance.poLCA <- function(x, ...) {
  as_glance_tibble(
    logLik = x$llik,
    AIC = x$aic,
    BIC = x$bic,
    g.squared = x$Gsq,
    chi.squared = x$Chisq,
    df = x$npar,
    df.residual = x$resid.df,
    nobs = stats::nobs(x),
    na_types = "rrrrriii"
  )
}


# a function to reshape each element of the probs and probs.se lists
reshape_probs <- function(x_, x_name) {
  x_ %>%
    as.data.frame.table(responseName = "value") %>%
    cbind(variable = x_name, .)
}

Try the broom package in your browser

Any scripts or data that you put into this service are public.

broom documentation built on Aug. 30, 2022, 1:07 a.m.