Nothing
btrm_continuous_predict=function(ET,ynew,xnew,znew){
#1 prediction function for new data
n=nrow(xnew) # number of subjects
node.hat=rep(1,n) # node number
marker.hat=rep(NA,n) # marker for subj in test data
if(ET$numNodes==1){ #There is only 1 terminal node
marker.hat=rep(ET$marker[1],n)
node.hat=rep(1,n)
}else{
for(i in ET$internal){
# define index number and eta number
idx=(node.hat==i)
#xnew.sel=unique(xnew[which(idx),ET$splitVariable[i]])
# Split node i into left & right
left=which(idx & xnew[,ET$splitVariable[i]]<=ET$cutoff[i])
right=which(idx & xnew[,ET$splitVariable[i]]>ET$cutoff[i])
node.hat[left]=2*i
node.hat[right]=2*i+1
marker.hat[left]=ET$marker[2*i] # selected marker for each subj
marker.hat[right]=ET$marker[2*i+1]
}
}
#2 prediction function
yhat=rep(NA, n) #linear predictor
for(i in 1:n){
znew.i=c(1,znew[i,marker.hat[i]])
yhat[i]=sum(ET$bhat[[node.hat[i]]]*znew.i)
}
return(list(node.hat=node.hat,marker.hat=marker.hat,yhat=yhat))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.