View source: R/cTMed-delta-beta.R
DeltaBeta | R Documentation |
This function computes the delta method
sampling variance-covariance matrix
for the elements of the matrix of lagged coefficients
\boldsymbol{\beta}
over a specific time interval \Delta t
or a range of time intervals
using the first-order stochastic differential equation model's
drift matrix \boldsymbol{\Phi}
.
DeltaBeta(phi, vcov_phi_vec, delta_t, ncores = NULL)
phi |
Numeric matrix.
The drift matrix ( |
vcov_phi_vec |
Numeric matrix.
The sampling variance-covariance matrix of
|
delta_t |
Vector of positive numbers.
Time interval
( |
ncores |
Positive integer.
Number of cores to use.
If |
See Total()
.
Let \boldsymbol{\theta}
be
\mathrm{vec} \left( \boldsymbol{\Phi} \right)
,
that is,
the elements of the \boldsymbol{\Phi}
matrix
in vector form sorted column-wise.
Let \hat{\boldsymbol{\theta}}
be
\mathrm{vec} \left( \hat{\boldsymbol{\Phi}} \right)
.
By the multivariate central limit theory,
the function \mathbf{g}
using \hat{\boldsymbol{\theta}}
as input
can be expressed as:
\sqrt{n}
\left(
\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)
-
\mathbf{g} \left( \boldsymbol{\theta} \right)
\right)
\xrightarrow[]{
\mathrm{D}
}
\mathcal{N}
\left(
0,
\mathbf{J}
\boldsymbol{\Gamma}
\mathbf{J}^{\prime}
\right)
where \mathbf{J}
is the matrix of first-order derivatives
of the function \mathbf{g}
with respect to the elements of \boldsymbol{\theta}
and
\boldsymbol{\Gamma}
is the asymptotic variance-covariance matrix of
\hat{\boldsymbol{\theta}}
.
From the former,
we can derive the distribution of
\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)
as follows:
\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)
\approx
\mathcal{N}
\left(
\mathbf{g} \left( \boldsymbol{\theta} \right)
,
n^{-1}
\mathbf{J}
\boldsymbol{\Gamma}
\mathbf{J}^{\prime}
\right)
The uncertainty associated with the estimator
\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)
is, therefore, given by
n^{-1} \mathbf{J} \boldsymbol{\Gamma} \mathbf{J}^{\prime}
.
When \boldsymbol{\Gamma}
is unknown,
by substitution,
we can use
the estimated sampling variance-covariance matrix of
\hat{\boldsymbol{\theta}}
,
that is,
\hat{\mathbb{V}} \left( \hat{\boldsymbol{\theta}} \right)
for n^{-1} \boldsymbol{\Gamma}
.
Therefore,
the sampling variance-covariance matrix of
\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)
is given by
\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)
\approx
\mathcal{N}
\left(
\mathbf{g} \left( \boldsymbol{\theta} \right)
,
\mathbf{J}
\hat{\mathbb{V}} \left( \hat{\boldsymbol{\theta}} \right)
\mathbf{J}^{\prime}
\right) .
Returns an object
of class ctmeddelta
which is a list with the following elements:
Function call.
Function arguments.
Function used ("DeltaBeta").
A list the length of which is equal to
the length of delta_t
.
Each element in the output
list has the following elements:
Time interval.
Jacobian matrix.
Estimated elements of the matrix of lagged coefficients.
Sampling variance-covariance matrix of estimated elements of the matrix of lagged coefficients.
Ivan Jacob Agaloos Pesigan
Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/271028")}
Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10705511.2014.973960")}
Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11336-021-09767-0")}
Other Continuous Time Mediation Functions:
DeltaIndirectCentral()
,
DeltaMed()
,
DeltaTotalCentral()
,
Direct()
,
Indirect()
,
IndirectCentral()
,
MCBeta()
,
MCIndirectCentral()
,
MCMed()
,
MCPhi()
,
MCTotalCentral()
,
Med()
,
PosteriorBeta()
,
PosteriorIndirectCentral()
,
PosteriorMed()
,
PosteriorPhi()
,
PosteriorTotalCentral()
,
Total()
,
TotalCentral()
,
Trajectory()
phi <- matrix(
data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0, 0, -0.693
),
nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
vcov_phi_vec <- matrix(
data = c(
0.002704274, -0.001475275, 0.000949122,
-0.001619422, 0.000885122, -0.000569404,
0.00085493, -0.000465824, 0.000297815,
-0.001475275, 0.004428442, -0.002642303,
0.000980573, -0.00271817, 0.001618805,
-0.000586921, 0.001478421, -0.000871547,
0.000949122, -0.002642303, 0.006402668,
-0.000697798, 0.001813471, -0.004043138,
0.000463086, -0.001120949, 0.002271711,
-0.001619422, 0.000980573, -0.000697798,
0.002079286, -0.001152501, 0.000753,
-0.001528701, 0.000820587, -0.000517524,
0.000885122, -0.00271817, 0.001813471,
-0.001152501, 0.00342605, -0.002075005,
0.000899165, -0.002532849, 0.001475579,
-0.000569404, 0.001618805, -0.004043138,
0.000753, -0.002075005, 0.004984032,
-0.000622255, 0.001634917, -0.003705661,
0.00085493, -0.000586921, 0.000463086,
-0.001528701, 0.000899165, -0.000622255,
0.002060076, -0.001096684, 0.000686386,
-0.000465824, 0.001478421, -0.001120949,
0.000820587, -0.002532849, 0.001634917,
-0.001096684, 0.003328692, -0.001926088,
0.000297815, -0.000871547, 0.002271711,
-0.000517524, 0.001475579, -0.003705661,
0.000686386, -0.001926088, 0.004726235
),
nrow = 9
)
# Specific time interval ----------------------------------------------------
DeltaBeta(
phi = phi,
vcov_phi_vec = vcov_phi_vec,
delta_t = 1
)
# Range of time intervals ---------------------------------------------------
delta <- DeltaBeta(
phi = phi,
vcov_phi_vec = vcov_phi_vec,
delta_t = 1:5
)
plot(delta)
# Methods -------------------------------------------------------------------
# DeltaBeta has a number of methods including
# print, summary, confint, and plot
print(delta)
summary(delta)
confint(delta, level = 0.95)
plot(delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.