Total: Total Effect Matrix Over a Specific Time Interval

View source: R/cTMed-total.R

TotalR Documentation

Total Effect Matrix Over a Specific Time Interval

Description

This function computes the total effects matrix over a specific time interval \Delta t using the first-order stochastic differential equation model's drift matrix \boldsymbol{\Phi}.

Usage

Total(phi, delta_t)

Arguments

phi

Numeric matrix. The drift matrix (\boldsymbol{\Phi}). phi should have row and column names pertaining to the variables in the system.

delta_t

Numeric. Time interval (\Delta t).

Details

The total effect matrix over a specific time interval \Delta t is given by

\mathrm{Total}_{\Delta t} = \exp \left( \Delta t \boldsymbol{\Phi} \right)

where \boldsymbol{\Phi} denotes the drift matrix, and \Delta t the time interval.

Linear Stochastic Differential Equation Model

The measurement model is given by

\mathbf{y}_{i, t} = \boldsymbol{\nu} + \boldsymbol{\Lambda} \boldsymbol{\eta}_{i, t} + \boldsymbol{\varepsilon}_{i, t}, \quad \mathrm{with} \quad \boldsymbol{\varepsilon}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \boldsymbol{\Theta} \right)

where \mathbf{y}_{i, t}, \boldsymbol{\eta}_{i, t}, and \boldsymbol{\varepsilon}_{i, t} are random variables and \boldsymbol{\nu}, \boldsymbol{\Lambda}, and \boldsymbol{\Theta} are model parameters. \mathbf{y}_{i, t} represents a vector of observed random variables, \boldsymbol{\eta}_{i, t} a vector of latent random variables, and \boldsymbol{\varepsilon}_{i, t} a vector of random measurement errors, at time t and individual i. \boldsymbol{\nu} denotes a vector of intercepts, \boldsymbol{\Lambda} a matrix of factor loadings, and \boldsymbol{\Theta} the covariance matrix of \boldsymbol{\varepsilon}.

An alternative representation of the measurement error is given by

\boldsymbol{\varepsilon}_{i, t} = \boldsymbol{\Theta}^{\frac{1}{2}} \mathbf{z}_{i, t}, \quad \mathrm{with} \quad \mathbf{z}_{i, t} \sim \mathcal{N} \left( \mathbf{0}, \mathbf{I} \right)

where \mathbf{z}_{i, t} is a vector of independent standard normal random variables and \left( \boldsymbol{\Theta}^{\frac{1}{2}} \right) \left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)^{\prime} = \boldsymbol{\Theta} .

The dynamic structure is given by

\mathrm{d} \boldsymbol{\eta}_{i, t} = \left( \boldsymbol{\iota} + \boldsymbol{\Phi} \boldsymbol{\eta}_{i, t} \right) \mathrm{d}t + \boldsymbol{\Sigma}^{\frac{1}{2}} \mathrm{d} \mathbf{W}_{i, t}

where \boldsymbol{\iota} is a term which is unobserved and constant over time, \boldsymbol{\Phi} is the drift matrix which represents the rate of change of the solution in the absence of any random fluctuations, \boldsymbol{\Sigma} is the matrix of volatility or randomness in the process, and \mathrm{d}\boldsymbol{W} is a Wiener process or Brownian motion, which represents random fluctuations.

Value

Returns an object of class ctmedeffect which is a list with the following elements:

call

Function call.

args

Function arguments.

fun

Function used ("Total").

output

The matrix of total effects.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/271028")}

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10705511.2014.973960")}

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11336-021-09767-0")}

See Also

Other Continuous Time Mediation Functions: DeltaBeta(), DeltaIndirectCentral(), DeltaMed(), DeltaTotalCentral(), Direct(), Indirect(), IndirectCentral(), MCBeta(), MCIndirectCentral(), MCMed(), MCPhi(), MCTotalCentral(), Med(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorPhi(), PosteriorTotalCentral(), TotalCentral(), Trajectory()

Examples

phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
delta_t <- 1
Total(
  phi = phi,
  delta_t = delta_t
)
phi <- matrix(
  data = c(
    -6, 5.5, 0, 0,
    1.25, -2.5, 5.9, -7.3,
    0, 0, -6, 2.5,
    5, 0, 0, -6
  ),
  nrow = 4
)
colnames(phi) <- rownames(phi) <- paste0("y", 1:4)
Total(
  phi = phi,
  delta_t = delta_t
)


cTMed documentation built on Oct. 21, 2024, 5:08 p.m.