View source: R/cTMed-mc-total-central.R
| MCTotalCentral | R Documentation |
This function generates a Monte Carlo method
sampling distribution
of the total effect centrality
at a particular time interval \Delta t
using the first-order stochastic differential equation model
drift matrix \boldsymbol{\Phi}.
MCTotalCentral(
phi,
vcov_phi_vec,
delta_t,
R,
test_phi = TRUE,
ncores = NULL,
seed = NULL,
tol = 0.01
)
phi |
Numeric matrix.
The drift matrix ( |
vcov_phi_vec |
Numeric matrix.
The sampling variance-covariance matrix of
|
delta_t |
Numeric.
Time interval
( |
R |
Positive integer. Number of replications. |
test_phi |
Logical.
If |
ncores |
Positive integer.
Number of cores to use.
If |
seed |
Random seed. |
tol |
Numeric. Smallest possible time interval to allow. |
See TotalCentral() for more details.
Let \boldsymbol{\theta} be
\mathrm{vec} \left( \boldsymbol{\Phi} \right),
that is,
the elements of the \boldsymbol{\Phi} matrix
in vector form sorted column-wise.
Let \hat{\boldsymbol{\theta}} be
\mathrm{vec} \left( \hat{\boldsymbol{\Phi}} \right).
Based on the asymptotic properties of maximum likelihood estimators,
we can assume that estimators are normally distributed
around the population parameters.
\hat{\boldsymbol{\theta}}
\sim
\mathcal{N}
\left(
\boldsymbol{\theta},
\mathbb{V} \left( \hat{\boldsymbol{\theta}} \right)
\right)
Using this distributional assumption,
a sampling distribution of \hat{\boldsymbol{\theta}}
which we refer to as \hat{\boldsymbol{\theta}}^{\ast}
can be generated by replacing the population parameters
with sample estimates,
that is,
\hat{\boldsymbol{\theta}}^{\ast}
\sim
\mathcal{N}
\left(
\hat{\boldsymbol{\theta}},
\hat{\mathbb{V}} \left( \hat{\boldsymbol{\theta}} \right)
\right) .
Let
\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)
be a parameter that is a function of the estimated parameters.
A sampling distribution of
\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right) ,
which we refer to as
\mathbf{g} \left( \hat{\boldsymbol{\theta}}^{\ast} \right) ,
can be generated by using the simulated estimates
to calculate
\mathbf{g}.
The standard deviations of the simulated estimates
are the standard errors.
Percentiles corresponding to
100 \left( 1 - \alpha \right) \%
are the confidence intervals.
Returns an object
of class ctmedmc which is a list with the following elements:
Function call.
Function arguments.
Function used ("MCTotalCentral").
A list the length of which is equal to
the length of delta_t.
Each element in the output list has the following elements:
A vector of total effect centrality.
A matrix of Monte Carlo total effect centrality.
Ivan Jacob Agaloos Pesigan
Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/271028")}
Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10705511.2014.973960")}
Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11336-021-09767-0")}
Other Continuous-Time Mediation Functions:
BootBeta(),
BootBetaStd(),
BootIndirectCentral(),
BootMed(),
BootMedStd(),
BootTotalCentral(),
DeltaBeta(),
DeltaBetaStd(),
DeltaIndirectCentral(),
DeltaMed(),
DeltaMedStd(),
DeltaTotalCentral(),
Direct(),
DirectStd(),
Indirect(),
IndirectCentral(),
IndirectStd(),
MCBeta(),
MCBetaStd(),
MCIndirectCentral(),
MCMed(),
MCMedStd(),
MCPhi(),
MCPhiSigma(),
Med(),
MedStd(),
PosteriorBeta(),
PosteriorIndirectCentral(),
PosteriorMed(),
PosteriorTotalCentral(),
Total(),
TotalCentral(),
TotalStd(),
Trajectory()
set.seed(42)
phi <- matrix(
data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0, 0, -0.693
),
nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
vcov_phi_vec <- matrix(
data = c(
0.00843, 0.00040, -0.00151,
-0.00600, -0.00033, 0.00110,
0.00324, 0.00020, -0.00061,
0.00040, 0.00374, 0.00016,
-0.00022, -0.00273, -0.00016,
0.00009, 0.00150, 0.00012,
-0.00151, 0.00016, 0.00389,
0.00103, -0.00007, -0.00283,
-0.00050, 0.00000, 0.00156,
-0.00600, -0.00022, 0.00103,
0.00644, 0.00031, -0.00119,
-0.00374, -0.00021, 0.00070,
-0.00033, -0.00273, -0.00007,
0.00031, 0.00287, 0.00013,
-0.00014, -0.00170, -0.00012,
0.00110, -0.00016, -0.00283,
-0.00119, 0.00013, 0.00297,
0.00063, -0.00004, -0.00177,
0.00324, 0.00009, -0.00050,
-0.00374, -0.00014, 0.00063,
0.00495, 0.00024, -0.00093,
0.00020, 0.00150, 0.00000,
-0.00021, -0.00170, -0.00004,
0.00024, 0.00214, 0.00012,
-0.00061, 0.00012, 0.00156,
0.00070, -0.00012, -0.00177,
-0.00093, 0.00012, 0.00223
),
nrow = 9
)
# Specific time interval ----------------------------------------------------
MCTotalCentral(
phi = phi,
vcov_phi_vec = vcov_phi_vec,
delta_t = 1,
R = 100L # use a large value for R in actual research
)
# Range of time intervals ---------------------------------------------------
mc <- MCTotalCentral(
phi = phi,
vcov_phi_vec = vcov_phi_vec,
delta_t = 1:5,
R = 100L # use a large value for R in actual research
)
plot(mc)
# Methods -------------------------------------------------------------------
# MCTotalCentral has a number of methods including
# print, summary, confint, and plot
print(mc)
summary(mc)
confint(mc, level = 0.95)
plot(mc)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.