View source: R/cTMed-delta-total-central.R
DeltaTotalCentral | R Documentation |
This function computes the delta method
sampling variance-covariance matrix
for the total effect centrality
over a specific time interval \Delta t
or a range of time intervals
using the first-order stochastic differential equation model's
drift matrix \boldsymbol{\Phi}
.
DeltaTotalCentral(phi, vcov_phi_vec, delta_t, ncores = NULL)
phi |
Numeric matrix.
The drift matrix ( |
vcov_phi_vec |
Numeric matrix.
The sampling variance-covariance matrix of
|
delta_t |
Vector of positive numbers.
Time interval
( |
ncores |
Positive integer.
Number of cores to use.
If |
See TotalCentral()
more details.
Let \boldsymbol{\theta}
be
\mathrm{vec} \left( \boldsymbol{\Phi} \right)
,
that is,
the elements of the \boldsymbol{\Phi}
matrix
in vector form sorted column-wise.
Let \hat{\boldsymbol{\theta}}
be
\mathrm{vec} \left( \hat{\boldsymbol{\Phi}} \right)
.
By the multivariate central limit theory,
the function \mathbf{g}
using \hat{\boldsymbol{\theta}}
as input
can be expressed as:
\sqrt{n}
\left(
\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)
-
\mathbf{g} \left( \boldsymbol{\theta} \right)
\right)
\xrightarrow[]{
\mathrm{D}
}
\mathcal{N}
\left(
0,
\mathbf{J}
\boldsymbol{\Gamma}
\mathbf{J}^{\prime}
\right)
where \mathbf{J}
is the matrix of first-order derivatives
of the function \mathbf{g}
with respect to the elements of \boldsymbol{\theta}
and
\boldsymbol{\Gamma}
is the asymptotic variance-covariance matrix of
\hat{\boldsymbol{\theta}}
.
From the former,
we can derive the distribution of
\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)
as follows:
\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)
\approx
\mathcal{N}
\left(
\mathbf{g} \left( \boldsymbol{\theta} \right)
,
n^{-1}
\mathbf{J}
\boldsymbol{\Gamma}
\mathbf{J}^{\prime}
\right)
The uncertainty associated with the estimator
\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)
is, therefore, given by
n^{-1} \mathbf{J} \boldsymbol{\Gamma} \mathbf{J}^{\prime}
.
When \boldsymbol{\Gamma}
is unknown,
by substitution,
we can use
the estimated sampling variance-covariance matrix of
\hat{\boldsymbol{\theta}}
,
that is,
\hat{\mathbb{V}} \left( \hat{\boldsymbol{\theta}} \right)
for n^{-1} \boldsymbol{\Gamma}
.
Therefore,
the sampling variance-covariance matrix of
\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)
is given by
\mathbf{g} \left( \hat{\boldsymbol{\theta}} \right)
\approx
\mathcal{N}
\left(
\mathbf{g} \left( \boldsymbol{\theta} \right)
,
\mathbf{J}
\hat{\mathbb{V}} \left( \hat{\boldsymbol{\theta}} \right)
\mathbf{J}^{\prime}
\right) .
Returns an object
of class ctmeddelta
which is a list with the following elements:
Function call.
Function arguments.
Function used ("DeltaTotalCentral").
A list the length of which is equal to
the length of delta_t
.
Each element in the output
list has the following elements:
Time interval.
Jacobian matrix.
Estimated total effect centrality.
Sampling variance-covariance matrix of estimated total effect centrality.
Ivan Jacob Agaloos Pesigan
Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/271028")}
Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10705511.2014.973960")}
Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11336-021-09767-0")}
Other Continuous Time Mediation Functions:
DeltaBeta()
,
DeltaIndirectCentral()
,
DeltaMed()
,
Direct()
,
Indirect()
,
IndirectCentral()
,
MCBeta()
,
MCIndirectCentral()
,
MCMed()
,
MCPhi()
,
MCTotalCentral()
,
Med()
,
PosteriorBeta()
,
PosteriorIndirectCentral()
,
PosteriorMed()
,
PosteriorPhi()
,
PosteriorTotalCentral()
,
Total()
,
TotalCentral()
,
Trajectory()
phi <- matrix(
data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0, 0, -0.693
),
nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
vcov_phi_vec <- matrix(
data = c(
0.002704274, -0.001475275, 0.000949122,
-0.001619422, 0.000885122, -0.000569404,
0.00085493, -0.000465824, 0.000297815,
-0.001475275, 0.004428442, -0.002642303,
0.000980573, -0.00271817, 0.001618805,
-0.000586921, 0.001478421, -0.000871547,
0.000949122, -0.002642303, 0.006402668,
-0.000697798, 0.001813471, -0.004043138,
0.000463086, -0.001120949, 0.002271711,
-0.001619422, 0.000980573, -0.000697798,
0.002079286, -0.001152501, 0.000753,
-0.001528701, 0.000820587, -0.000517524,
0.000885122, -0.00271817, 0.001813471,
-0.001152501, 0.00342605, -0.002075005,
0.000899165, -0.002532849, 0.001475579,
-0.000569404, 0.001618805, -0.004043138,
0.000753, -0.002075005, 0.004984032,
-0.000622255, 0.001634917, -0.003705661,
0.00085493, -0.000586921, 0.000463086,
-0.001528701, 0.000899165, -0.000622255,
0.002060076, -0.001096684, 0.000686386,
-0.000465824, 0.001478421, -0.001120949,
0.000820587, -0.002532849, 0.001634917,
-0.001096684, 0.003328692, -0.001926088,
0.000297815, -0.000871547, 0.002271711,
-0.000517524, 0.001475579, -0.003705661,
0.000686386, -0.001926088, 0.004726235
),
nrow = 9
)
# Specific time interval ----------------------------------------------------
DeltaTotalCentral(
phi = phi,
vcov_phi_vec = vcov_phi_vec,
delta_t = 1
)
# Range of time intervals ---------------------------------------------------
delta <- DeltaTotalCentral(
phi = phi,
vcov_phi_vec = vcov_phi_vec,
delta_t = 1:5
)
plot(delta)
# Methods -------------------------------------------------------------------
# DeltaTotalCentral has a number of methods including
# print, summary, confint, and plot
print(delta)
summary(delta)
confint(delta, level = 0.95)
plot(delta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.