View source: R/cTMed-med-std.R
| MedStd | R Documentation |
This function computes the standardized total, direct, and indirect effects
of the independent variable X
on the dependent variable Y
through mediator variables \mathbf{m}
over a specific time interval \Delta t
or a range of time intervals
using the first-order stochastic differential equation model's
drift matrix \boldsymbol{\Phi}
and process noise covariance matrix \boldsymbol{\Sigma}.
MedStd(phi, sigma, delta_t, from, to, med, tol = 0.01)
phi |
Numeric matrix.
The drift matrix ( |
sigma |
Numeric matrix.
The process noise covariance matrix ( |
delta_t |
Numeric.
Time interval
( |
from |
Character string.
Name of the independent variable |
to |
Character string.
Name of the dependent variable |
med |
Character vector.
Name/s of the mediator variable/s in |
tol |
Numeric. Smallest possible time interval to allow. |
See TotalStd(),
DirectStd(), and
IndirectStd() for more details.
Returns an object
of class ctmedmed which is a list with the following elements:
Function call.
Function arguments.
Function used ("MedStd").
A standardized matrix of total, direct, and indirect effects.
Ivan Jacob Agaloos Pesigan
Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.2307/271028")}
Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10705511.2014.973960")}
Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/s11336-021-09767-0")}
Other Continuous-Time Mediation Functions:
BootBeta(),
BootBetaStd(),
BootIndirectCentral(),
BootMed(),
BootMedStd(),
BootTotalCentral(),
DeltaBeta(),
DeltaBetaStd(),
DeltaIndirectCentral(),
DeltaMed(),
DeltaMedStd(),
DeltaTotalCentral(),
Direct(),
DirectStd(),
Indirect(),
IndirectCentral(),
IndirectStd(),
MCBeta(),
MCBetaStd(),
MCIndirectCentral(),
MCMed(),
MCMedStd(),
MCPhi(),
MCPhiSigma(),
MCTotalCentral(),
Med(),
PosteriorBeta(),
PosteriorIndirectCentral(),
PosteriorMed(),
PosteriorTotalCentral(),
Total(),
TotalCentral(),
TotalStd(),
Trajectory()
phi <- matrix(
data = c(
-0.357, 0.771, -0.450,
0.0, -0.511, 0.729,
0, 0, -0.693
),
nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
sigma <- matrix(
data = c(
0.24455556, 0.02201587, -0.05004762,
0.02201587, 0.07067800, 0.01539456,
-0.05004762, 0.01539456, 0.07553061
),
nrow = 3
)
# Specific time interval ----------------------------------------------------
MedStd(
phi = phi,
sigma = sigma,
delta_t = 1,
from = "x",
to = "y",
med = "m"
)
# Range of time intervals ---------------------------------------------------
med <- MedStd(
phi = phi,
sigma = sigma,
delta_t = 1:30,
from = "x",
to = "y",
med = "m"
)
plot(med)
# Methods -------------------------------------------------------------------
# MedStd has a number of methods including
# print, summary, and plot
med <- MedStd(
phi = phi,
sigma = sigma,
delta_t = 1:5,
from = "x",
to = "y",
med = "m"
)
print(med)
summary(med)
plot(med)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.