R/cTMed-total.R

Defines functions Total

Documented in Total

#' Total Effect Matrix
#' Over a Specific Time Interval
#'
#' This function computes the total effects matrix
#' over a specific time interval \eqn{\Delta t}
#' using the first-order stochastic differential equation model's
#' drift matrix \eqn{\boldsymbol{\Phi}}.
#'
#' @details The total effect matrix
#'   over a specific time interval \eqn{\Delta t}
#'   is given by
#'   \deqn{
#'     \mathrm{Total}_{\Delta t}
#'     =
#'     \exp
#'     \left(
#'       \Delta t
#'       \boldsymbol{\Phi}
#'     \right)
#'   }
#'   where
#'   \eqn{\boldsymbol{\Phi}} denotes the drift matrix, and
#'   \eqn{\Delta t} the time interval.
#'
#'   ## Linear Stochastic Differential Equation Model
#'
#'   The measurement model is given by
#'   \deqn{
#'     \mathbf{y}_{i, t}
#'     =
#'     \boldsymbol{\nu}
#'     +
#'     \boldsymbol{\Lambda}
#'     \boldsymbol{\eta}_{i, t}
#'     +
#'     \boldsymbol{\varepsilon}_{i, t},
#'     \quad
#'     \mathrm{with}
#'     \quad
#'     \boldsymbol{\varepsilon}_{i, t}
#'     \sim
#'     \mathcal{N}
#'     \left(
#'     \mathbf{0},
#'     \boldsymbol{\Theta}
#'     \right)
#'   }
#'   where
#'   \eqn{\mathbf{y}_{i, t}},
#'   \eqn{\boldsymbol{\eta}_{i, t}},
#'   and
#'   \eqn{\boldsymbol{\varepsilon}_{i, t}}
#'   are random variables
#'   and
#'   \eqn{\boldsymbol{\nu}},
#'   \eqn{\boldsymbol{\Lambda}},
#'   and
#'   \eqn{\boldsymbol{\Theta}}
#'   are model parameters.
#'   \eqn{\mathbf{y}_{i, t}}
#'   represents a vector of observed random variables,
#'   \eqn{\boldsymbol{\eta}_{i, t}}
#'   a vector of latent random variables,
#'   and
#'   \eqn{\boldsymbol{\varepsilon}_{i, t}}
#'   a vector of random measurement errors,
#'   at time \eqn{t} and individual \eqn{i}.
#'   \eqn{\boldsymbol{\nu}}
#'   denotes a vector of intercepts,
#'   \eqn{\boldsymbol{\Lambda}}
#'   a matrix of factor loadings,
#'   and
#'   \eqn{\boldsymbol{\Theta}}
#'   the covariance matrix of
#'   \eqn{\boldsymbol{\varepsilon}}.
#'
#'   An alternative representation of the measurement error
#'   is given by
#'   \deqn{
#'     \boldsymbol{\varepsilon}_{i, t}
#'     =
#'     \boldsymbol{\Theta}^{\frac{1}{2}}
#'     \mathbf{z}_{i, t},
#'     \quad
#'     \mathrm{with}
#'     \quad
#'     \mathbf{z}_{i, t}
#'     \sim
#'     \mathcal{N}
#'     \left(
#'     \mathbf{0},
#'     \mathbf{I}
#'     \right)
#'   }
#'   where
#'   \eqn{\mathbf{z}_{i, t}} is a vector of
#'   independent standard normal random variables and
#'   \eqn{
#'     \left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)
#'     \left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)^{\prime}
#'     =
#'     \boldsymbol{\Theta} .
#'   }
#'
#'   The dynamic structure is given by
#'   \deqn{
#'     \mathrm{d} \boldsymbol{\eta}_{i, t}
#'     =
#'     \left(
#'     \boldsymbol{\iota}
#'     +
#'     \boldsymbol{\Phi}
#'     \boldsymbol{\eta}_{i, t}
#'     \right)
#'     \mathrm{d}t
#'     +
#'     \boldsymbol{\Sigma}^{\frac{1}{2}}
#'     \mathrm{d}
#'     \mathbf{W}_{i, t}
#'   }
#'   where
#'   \eqn{\boldsymbol{\iota}}
#'   is a term which is unobserved and constant over time,
#'   \eqn{\boldsymbol{\Phi}}
#'   is the drift matrix
#'   which represents the rate of change of the solution
#'   in the absence of any random fluctuations,
#'   \eqn{\boldsymbol{\Sigma}}
#'   is the matrix of volatility
#'   or randomness in the process, and
#'   \eqn{\mathrm{d}\boldsymbol{W}}
#'   is a Wiener process or Brownian motion,
#'   which represents random fluctuations.
#'
#' @author Ivan Jacob Agaloos Pesigan
#'
#' @inheritParams Indirect
#' @inherit Indirect references
#'
#' @return Returns an object
#'   of class `ctmedeffect` which is a list with the following elements:
#'   \describe{
#'     \item{call}{Function call.}
#'     \item{args}{Function arguments.}
#'     \item{fun}{Function used ("Total").}
#'     \item{output}{The matrix of total effects.}
#'   }
#'
#' @examples
#' phi <- matrix(
#'   data = c(
#'     -0.357, 0.771, -0.450,
#'     0.0, -0.511, 0.729,
#'     0, 0, -0.693
#'   ),
#'   nrow = 3
#' )
#' colnames(phi) <- rownames(phi) <- c("x", "m", "y")
#' delta_t <- 1
#' Total(
#'   phi = phi,
#'   delta_t = delta_t
#' )
#' phi <- matrix(
#'   data = c(
#'     -6, 5.5, 0, 0,
#'     1.25, -2.5, 5.9, -7.3,
#'     0, 0, -6, 2.5,
#'     5, 0, 0, -6
#'   ),
#'   nrow = 4
#' )
#' colnames(phi) <- rownames(phi) <- paste0("y", 1:4)
#' Total(
#'   phi = phi,
#'   delta_t = delta_t
#' )
#'
#' @family Continuous Time Mediation Functions
#' @keywords cTMed effects
#' @export
Total <- function(phi,
                  delta_t) {
  idx <- rownames(phi)
  stopifnot(
    idx == colnames(phi)
  )
  args <- list(
    phi = phi,
    delta_t = delta_t
  )
  output <- .Total(
    phi = phi,
    delta_t = delta_t
  )
  colnames(output) <- rownames(output) <- idx
  out <- list(
    call = match.call(),
    args = args,
    fun = "Total",
    output = output
  )
  class(out) <- c(
    "ctmedeffect",
    class(out)
  )
  return(out)
}

Try the cTMed package in your browser

Any scripts or data that you put into this service are public.

cTMed documentation built on Oct. 21, 2024, 5:08 p.m.