if (campsis::onCran()) { cat("This vignette was not built on CRAN. Please check out the online version [here](https://calvagone.github.io/campsis.doc/articles/v04_bioavailability.html).") knitr::knit_exit() }
library(campsis)
There are 2 ways to implement bioavailability in CAMPSIS:
In the first case, the simulation engine will take care of the bioavailability. In the second case, CAMPSIS will adapt automatically the amount injected through the dataset (AMT column).
Let's use a 2-compartment model with absorption compartment to illustrate how this can be achieved.
model <- model_suite$nonmem$advan4_trans4
For this example, we're going to define a bioavailability F1
for this absorption compartment.
First let's create a new parameter F1
, log-normally distributed with a median of 0.75 and 10% CV.
model <- model %>% add(Theta(name="F1", value=0.75)) model <- model %>% add(Omega(name="F1", value=10, type="cv%"))
Now, let's add an equation to the drug model to define F1
.
model <- model %>% add(Equation("F1", "THETA_F1*exp(ETA_F1)"))
Finally, we need to tell CAMPSIS that F1
corresponds to a bioavailability.
model <- model %>% add(Bioavailability(compartment=1, rhs="F1"))
Our persisted drug model would look like this:
model
Now, let's now give a simple bolus and simulate with and without F1
.
ds1 <- Dataset(50) %>% add(Bolus(time=0, amount=1000)) %>% add(Observations(times=seq(0,24,by=0.5)))
results_f1 <- model %>% simulate(dataset=ds1, seed=1) results_no_f1 <- model_suite$nonmem$advan4_trans4 %>% simulate(dataset=ds1, seed=1) gridExtra::grid.arrange(shadedPlot(results_f1, "CONC"), shadedPlot(results_no_f1, "CONC"), nrow=1)
The same simulation can be performed by adapting the column AMT
in the dataset.
First, we need to sample F1
values. This can be done as follows:
set.seed(1)
distribution <- ParameterDistribution(model=model, theta="F1", omega="F1") %>% sample(50L)
We can then pass the pre-sampled distribution.
ds2 <- Dataset(50) %>% add(Bolus(time=0, amount=1000, f=distribution)) %>% add(Observations(times=seq(0,24,by=0.5)))
Let's have a look at the dataset, in its table form, and if we look at the doses only:
ds2 %>% export(dest="RxODE") %>% dosingOnly() %>% head()
Finally, we can simulate the original model using this new dataset.
results_f1 <- model_suite$nonmem$advan4_trans4 %>% simulate(dataset=ds2, seed=1) shadedPlot(results_f1, "CONC")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.