Nothing
if (campsis::onCran()) { cat("This vignette was not built on CRAN. Please check out the online version [here](https://calvagone.github.io/campsis.doc/articles/v11_scenarios.html).") knitr::knit_exit() }
library(campsis)
This vignette shows how scenarios can be implemented.
Using treatment arms:
model <- model_suite$nonmem$advan4_trans4 arm1 <- Arm(subjects=3, label="1000 mg SD") %>% add(Bolus(time=0, 1000)) %>% add(Observations(times=seq(0, 24, by=0.1))) arm2 <- Arm(subjects=5, label="1500 mg SD") %>% add(Bolus(time=0, 1500)) %>% add(Observations(times=seq(0, 24, by=0.1))) arm3 <- Arm(subjects=10, label="2000 mg SD") %>% add(Bolus(time=0, 2000)) %>% add(Observations(times=seq(0, 24, by=0.1))) results <- model %>% simulate(dataset=Dataset() %>% add(c(arm1, arm2, arm3)), seed=1) spaghettiPlot(results, "CONC", "ARM") + ggplot2::facet_wrap(~ARM)
Using scenarios:
model <- model_suite$nonmem$advan4_trans4 dataset <- Dataset() %>% add(Observations(times=seq(0, 24, by=0.1))) scenarios <- Scenarios() %>% add(Scenario("1000 mg SD", dataset=~.x %>% setSubjects(3) %>% add(Bolus(time=0, 1000)))) %>% add(Scenario("1500 mg SD", dataset=~.x %>% setSubjects(5) %>% add(Bolus(time=0, 1500)))) %>% add(Scenario("2000 mg SD", dataset=~.x %>% setSubjects(10) %>% add(Bolus(time=0, 2000)))) results <- model %>% simulate(dataset=dataset, scenarios=scenarios, seed=1) spaghettiPlot(results, "CONC", "SCENARIO") + ggplot2::facet_wrap(~SCENARIO)
Assume we want to test different values of THETA_KA
:
model <- model_suite$nonmem$advan4_trans4 ds <- Dataset(50) %>% add(Bolus(time=0, amount=1000)) %>% add(Observations(times=seq(0, 24, by=0.1))) scenarios <- Scenarios() %>% add(Scenario("THETA_KA=1", model=~.x %>% replace(Theta(name="KA", value=1)))) %>% add(Scenario("THETA_KA=3", model=~.x %>% replace(Theta(name="KA", value=3)))) %>% add(Scenario("THETA_KA=6", model=~.x %>% replace(Theta(name="KA", value=6)))) results <- model %>% simulate(dataset=ds, scenarios=scenarios, seed=1) shadedPlot(results, "CONC", "SCENARIO")
Assume we want to compare different distributions of body weight BW
:
model <- model_suite$nonmem$advan1_trans2 %>% replace(Equation("CL", "THETA_CL*exp(ETA_CL)*pow(BW/70, 0.75)")) %>% disable("IIV") ds <- Dataset(50) %>% add(Bolus(time=0, amount=1000)) %>% add(Observations(times=seq(0, 24, by=0.1))) %>% add(Covariate("BW", 70)) scenarios <- Scenarios() %>% add(Scenario("Constant BW")) %>% add(Scenario("BW ∼ Uniform distribution", dataset=~.x %>% replace(Covariate("BW", UniformDistribution(min=60, max=80))))) %>% add(Scenario("BW ∼ Normal distribution", dataset=~.x %>% replace(Covariate("BW", NormalDistribution(mean=70, sd=10))))) results <- model %>% simulate(dataset=ds, scenarios=scenarios, seed=1) shadedPlot(results, "CONC", "SCENARIO") + ggplot2::facet_wrap(~SCENARIO, ncol=1)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.